Fonia- sustainable grain

Our changing world and growing population can benefit from changing what we put on our menu plans – change what we eat often. Fonia is a drought tolerant grain in the millet family which can be harvested in just six to eight weeks from planting and it tolerates poor soil conditions.

Fonia is native to West African countries and may also have been used by ancient Egyptian cultures as the grain has been found in archeological sites.

Fonia is cooked similarly to rice but is a smaller grain. It would be good as a hot breakfast porridge or used like rice in salads or side dishes. It is gluten free, rich in fiber, protein, magnesium, zinc, and B vitamins. For more information and a couple recipes see: “Whole Grains- Fonio,” By Jessica Levinson, Today’s Dietitian, https://www.todaysdietitian.com/newarchives/0918p12.shtml

Disclaimer: Information provided for educational purposes within the guidelines of fair use, not intended for individual health care guidance.

Pumpkin seeds – rich in zinc

Pumpkin seed kernels, raw, unsalted.

Pumpkin seed kernels are a good source of protein, essential fats, fiber, magnesium and other vitamins and minerals – and a great source of zinc which may be lacking in vegetarian or vegan diets. (Pumpkin Seeds – Benefits, nutrition and dietary tips.) (Other vegetarian sources of zinc.)

Work is progressing on the development of pumpkin seed flour for use as a food thickening substance for use in gravies or other sauces or stews. It would increase the protein, essential fatty acids, and other trace nutrient content of the resulting foods. (10) The use of pumpkin seeds in the diet may also prove to be protective against cancer and liver or kidney injury; and as a good source of antioxidants such as carotenoids (vitamin A family of nutrients) the use of pumpkin seeds in the diet may prove to be helpful against many conditions that involve excess oxidative stress. (4, 5, 6, 7, 8, 9) They are also a source of vitamin E (tocopherols), other phytosterols, and linoleic acid, a beneficial polyunsaturated fat. Pumpkin seed oil may be helpful in wound healing. (15) Pumpkin seeds are also a good source of phospholipids, (16), which are important for skin and membrane health.

Pumpkins are considered a drought tolerant plant for gardeners. Adequate water is needed to grow larger pumpkin and squash but the vines can survive limited water conditions. The seeds of other summer and winter squash are also nutrient rich and also may be more drought tolerant plants. (11, 12) Enough but not too much water at the right times are critical. Flooding or severe drought may both harm the garden yield. Mulching and drip irrigation or other watering methods applied at optimal stages of growth can be the water thrifty solution for best yield. (13, 14)

The seeds of butternut squash and some types of winter squash can be collected when trimming the squash and later toasted and eaten as a crunchy nutritious snack. India grocery markets may also have shelled squash seeds available for sale. They are slightly smaller and paler in color than the shelled pumpkin kernels in the image above.

Magnesium is one of the beneficial nutrients found in pumpkin seeds. It is a mineral that is needed in greater quantity during pregnancy and high blood pressure/hypertension can be a symptom of deficiency. Preeclampsia and the more severe eclampsia are complications characterized by high blood pressure and edema/swelling that can occur during pregnancy. Toxins collect in the excess fluid buildup and can risk a brain condition similar to hypertension encephalopathy in the more severe eclampsia. Seizure activity can result and death for the woman and expected infant are risks. Magnesium is used as an intravenous or intramuscular injection to reduce risk of the seizures during eclampsia. The mineral seems to help protect the blood brain barrier and reduce swelling in the brain during eclampsia. It’s role as an antioxidant to reduce free radical toxins may be involved but the exact mechanism for its benefit in eclampsia is not known. (2, page 139)

More information about preclampsia is available in a previous post, and more information about food sources and supplement sources of magnesium is also available in a previous post.

I have several writing projects in draft mode however they overlap – pumpkin seeds, a good source of magnesium and zinc, helped my previous prenatal clients who had a history of preeclampsia or high blood pressure in a previous pregnancy prevent a reocurrence of the problem. Why? Possibly because of the magnesium and other beneficial nutrients which could be protecting the blood brain barrier and might then also be helpful for preventing harm to oligodendrocytes and protect against demyelination – a risk that can occur with some types of encephalopathy (3).

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827242/Megan Ware, What are the health benefits of pumpkin seeds?, July 24, 2018, https://www.medicalnewstoday.com/articles/303864.php
  2. Mehmet Kaya, Bulent Ahishali, Chapter 9: The role of magnesium in edema and blood brain barrier disruption, page 139, in the book edited by Robert Vink, Mihai Nechifor, Magnesium in the Central Nervous System, University of Adelaide Press, 2011, adelaide.edu.au, free ebook pdf, https://www.adelaide.edu.au/press/titles/magnesium/magnesium-ebook.pdf  (2
  3. S. Love, Demyelinating Diseases, J Clin Pathol. 2006 Nov; 59(11): 1151–1159.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1860500/ (3)
  4. Scientific Studies collection on a commercial website by Pepo Farms, https://pepofarms.com.au/scientificstudies/ (4) which includes:
  5. M. Gossell-Williams, A. Davis, N. O’Connor, Inhibition of Testosterone-Induced Hyperplasia of the Prostate of Sprague-Dawley Rats by Pumpkin Seed Oil. Jun 2006, Vol. 9, No. 2 : 284 -286. 
  6. C. Z. Nkosi, A. R. Opoku, S. E. Terblanche, Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-Induced liver injury in low-protein fed rats.
  7. Fahim AT Abd-el Fattah AA Agha AM Gad MZ
    Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats.
    In: Pharmacol Res (1995 Jan) 31(1):73-9 ISSN: 1043-6618
  8. Suphakarn VS Yarnnon C Ngunboonsri P, The effect of pumpkin seeds on oxalcrystalluria and urinary compositions of children in hyperendemic area. In: Am J Clin Nutr (1987 Jan) 45(1):115-21 ISSN: 0002-9165
  9. Matus Z Molnar P Szabo LG [Main carotenoids in pressed seeds (Cucurbitae semen) of oil pumpkin (Cucurbita pepo convar. pepo var. styriaca)] Olajtok (Cucurbita pepo convar. pepo var. styriaca) magjabol nyert presmaradek ossz-karotinoid-tartalmanak es karotinoid-osszetetelenek meghatarozasa. In: Acta Pharm Hung (1993 Sep) 63(5):247-56 ISSN: 0001-6659 (Published in Hungarian)  * The main carotenoids included per the Pepo Farms site: “The main components of the press-residue were lutein [3,3′-dihydroxy-alpha-carotene = (3R,3’R,6’R)-beta,epsilon-carotene-3,3′-diol; 52.5%] and beta- carotene (beta,epsilon-carotene; 10.1%). In addition to the above- mentioned pigments it was successful to reveal the presence of violaxanthin, luteoxanthin, auroxanthin epimers, lutein epoxide, flavoxanthin, chrysanthemaxanthin, 9(9′)-cis-lutein, 13(13′)-cis- lutein, 15-cis-lutein (central-cis)-lutein, alpha-cryptoxanthin, beta- cryptoxanthin and alpha-carotene (beta,epsilon-carotene) in small quantities.”  (4)
  10. Initial food technology research on the preparation and use of pumpkin seed flour for use in more nutritious gravy type sauces: Sharma G, Lakhawat S., Development, Quality Evaluation and Acceptability of Pumpkin Seed Flour Incorporated in Gravy. J Nutr Food Sci 7:613. doi: 10.4172/2155-9600.1000613      https://www.omicsonline.org/open-access/development-quality-evaluation-and-acceptability-of-pumpkin-seed-flourincorporated-in-gravy-2155-9600-1000613.php?aid=91345
  11. EllenB, Growing Drought Tolerant Vegetables, June 9, 2009, ThriftyFun.com, https://www.thriftyfun.com/Growing-Drought-Tolerant-Vegetables.html (11)
  12. Troy Scott, Drought Tolerant Vegetables for your Garden, July 9 2018, HeavenlyGreens.com http://www.heavenlygreens.com/blog/drought-tolerant-vegetables-for-your-garden (12)
  13. Joan Morris, Vegetable Gardening in a Drought, mercurynews.com, April 1, 2015,  https://www.mercurynews.com/2015/04/01/vegetable-gardening-in-a-drought/ (13)
  14. Extension Utah State University, Vegetable Irrigation: Squash and Pumpkin, Horticulture/Vegetables/2015-4,   https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1744&context=extension_curall (14)
  15. Bardaa S, Ben Halima N, Aloui F, et al. Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids in Health and Disease. 2016;15:73. doi:10.1186/s12944-016-0237-0. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827242/ (15)
  16. Zh.Y. Petkova, G.A. Antova, Changes in the composition of pumpkin seeds (Cucurbita moschata) during development and maturation. Grassas Y Aceites, 66 (1), Jan–March 2015, e058. http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/viewFile/1523/1658 (16)

Pre-eclampsia means pre convulsions; a life threatening prenatal condition.

Eclampsia is an old medical term for convulsions and has been a known risk with pregnancy for many centuries. (G5.1) In more recent centuries the earlier warning signs of pre-eclampsia have been recognized and include high blood pressure, protein in the urine, and edema – increased swelling in the legs, arms and face. Many women may experience increased puffiness or swelling in the lower legs during later stages of pregnancy and it can be painful to walk with swollen feet. In the more severe condition fluid is also collecting in other areas of the body on the exterior of cells instead of being collected by lymphatic or blood vessels and excreted as urine as in normal health.

Why the condition occurs is not known although some risk factors are known. It is more of a risk for very young women, (G5.3); very young women who are also overweight, (G5.4); overweight women; or women over age 40; women who are pregnant with twins, triplets, or more; women of African ethnicity;  women with a history or currently have high blood pressure; and any women who already had pre-eclampsia during previous pregnancies, or who have a family history of other women in their family (such as the pregnant woman’s sisters or her mother) having had pre-eclampsia. (G5.2) Very low calcium intake may increase risk. (G5.1)

What is known is that the condition or related high blood pressure conditions during pregnancy are a significant cause of maternal deaths, 18% of all maternal deaths in the U.S., and of neonatal/infant deaths, over 10,000 each year in the U.S.. It is also more frequently associated with preterm delivery of infants which can leave the infant more at risk for many other chronic health or development complications. (G5.1)

My health is not great, but it has been worse – I prefer better than worse. On my bucket list is to continue working on collating available research regarding the simple question – Why did simply adding raw shelled pumpkin seeds help my previous prenatal clients prevent the risk of having pre-eclampsia during their later pregnancies.

Possible answers: genetic variations in the TREK 1 potassium ion channels may leave women in some families more at risk for developing preeclampsia due to their membranes being less responsive as normal to changes in acidity or stretch – swelling. (G5.5) The preventative health solution might be too eat a more alkaline promoting diet, a more vegetable based diet rather than excess meats and dairy foods.

Very young women and women of African ethnicity may be more at risk due to less space within the abdomen and pelvic cavity. Young women may be smaller framed than more fully mature women in their twenties and the pelvic shape of women of African ethnicity is slightly narrower than that of other ethnic groups (may be a better shape for running fast though.) A hypothesis suggests a preventative health strategy that includes spending a half hour or so daily or periodically during the day in a position where the head is rested on the arms on a pillow while kneeling so the abdomen is inverted slightly and is above the heart – to help fluid movement and relieve pressure in the area around the baby. (G5.6)

The position that is recommended in the hypothesis article (G5.6) can be seen in this article, see Figure 3, Knee-Chest Position: (G5.7). It would likely help women with a family history of preeclampsia too if TREK 1 variations were involved, to relieve intra-abdominal pressure, or for any prenatal woman in the third trimester. The position can also help promote the infant remaining or moving to a head down position which is safer for delivery (preventing a breech birth delivery).

Pumpkin seeds may be particularly helpful due to being a good source of many nutrients including magnesium, (G5.13), zinc, (G5.11), and phospholipids. (G.26) Cocoa/chocolate is also a good source of magnesium and phospholipids (G.26) and women who report eating chocolate several times per week prenatally has been associated with less risk for preeclampsia. (G5.8)(G5.9) Zinc levels have been found to be significantly lower in women with preeclampsia than in pregnant women not experiencing preeclampsia. (G5.12)  Pumpkin seeds may also help due to omega 3 fatty acid content (G5.11) which has also been found to help reduce risk of preeclampsia. (G5.10Pumpkin seeds  or pumpkin seed oil may help prevent preeclampsia due to increased detoxification and removal of toxins from the body as they may cause a diuretic effect. (G5.11)

Pumpkin seeds are a good source of many minerals. Just two tablespoons provides about 25% of the daily recommendation for magnesium. (G5.13) They are also a source of manganese and other trace minerals including selenium. A larger serving of 100 grams (1/3-1/2 cup) would provide 17% of the daily recommendation for selenium and almost 200% of the recommendation for manganese. (G5.14) Supplements of 100 micrograms of selenium per day  for 6-8 weeks during later pregnancy were found beneficial for preventing pregnancy induced hypertension – high blood pressure in the later part of pregnancy is an early sign of preeclampsia. (G5.15)

Balance of nutrients is important and loss of nutrients due to increased oxidative stress may be the underlying problem rather than deficiency. Selenium, magnesium, and manganese levels were found to be comparable in women who did and did not develop preeclampsia in later pregnancy however the women who did develop the condition had elevated copper levels in early pregnancy. (G5.16) Copper and zinc levels need to be in balance with each other for optimal health.

Why should we care? The risk of complications or death for mothers and infants due to pre-eclampsia is significant and is worse in undeveloped nations. The rate of maternal death has been increasing in the U.S. and now is worse than that of other developed nations. Other developed nations range from four to nine maternal deaths per 100,000 live births while in the U.S. the rate has worsened to 26.4 maternal deaths per 100,000 live births. (G5.17) If 18% of those deaths are due to preeclampsia, (G5.1), then in 2015 when there were 3,978,497 births, (G5.18), approximately 189 families lost a mother due to the dangers of preeclampsia.

This is an introduction to the topic, a longer draft is available here: G5: Preeclampsia & TRP Channels, which does not contain some of the information in this post – yet.

Traveling is fun, I took pictures, but traveling the internet saves gasoline. Bucket list – before I kick the bucket I hope to continue working on ways to help women identify their individual risk factors that may be involved in preeclampsia and identify ways to reduce those risks. Like many problems a similar set of symptoms can have a variety of underlying causes, not just one cause, one set of symptoms. Health requires many things, not just one simple solution.

This may seem melodramatic however my health has been bad enough over the years and more recently to make me very appreciative of health and mental health. Dementia is a very real problem and one that is growing in number of people effected either as patients or as caregivers. I have improved my health but it required many changes in diet and lifestyle habits that  are ongoing, missing a day or two can send me back into negative health symptoms.

Magnesium is an important part of preeclampsia care that may also be needed for dementia. I will also post my initial draft on a magnesium  article I began working on after reading a textbook: Magnesium and the Central Nervous System, (free Magnesium ebook, adelaide.edu.au).  The short message that overlaps with this post is that to have adequate magnesium stores within the cells where it is needed for optimal health then it is likely also essential to have adequate protein intake and phospholipid intake. Something that I have found important that is not included in the text or other current medical articles on the topic is that for some people topical sources of magnesium such as Epsom salt/magnesium sulfate baths or footsoaks or magnesium chloride hand lotions or topical liquid solutions may be needed to bypass problems with intestinal absorption of magnesium.

  • Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

G.26: Arlen Frank, Chemistry of Plant Phosphorus Compounds, Elsevier, Jun 3, 2013, https://books.google.com/books/about/Chemistry_of_Plant_Phosphorus_Compounds.html?id=6btpFSV1T2YC (G.26)  

Robert Vink, Mihai Nechifor, editors, Magnesium in the Central Nervous System, University of Adelaide Press, 2011, adelaide.edu.au, free ebook pdf, https://www.adelaide.edu.au/press/titles/magnesium/magnesium-ebook.pdf 

  1. John D. MacArthur, Placental Fluorosis: Fluoride and Preeclampsia, Townsend Letter, May 2015; 382:74-79. http://www.townsendletter.com/May2015/placental0515.html (G5.1)
  2. Who is at risk of Preeclampsia?, NICHD, Eunice Kennedy Shriver National Institute of Child Health and Human Development,  https://www.nichd.nih.gov/health/topics/preeclampsia/conditioninfo/Pages/risk.aspx (G5.2)
  3. Priscila E Parra-Pingel, Luis A Quisiguiña-Avellán, Luis Hidalgo, Peter Chedraui, Faustino R Pérez-López, Pregnancy outcomes in younger and older adolescent mothers with severe preeclampsia, Adolesc Health Med Ther. 2017; 8: 81–86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476435/ (G5.3)
  4. Mulualem Endeshaw, Fantu Abebe, Solomon Worku, Lalem Menber, Muluken Assress, Muluken Assefa, Obesity in young age is a risk factor for preeclampsia: a facility based case-control study, northwest Ethiopia. BMC Pregnancy Childbirth. 2016; 16: 237. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992278/ (G5.4)
  5. Chad L. Cowles, Yi-Ying Wu, Scott D. Barnett, Michael T. Lee, Heather R. Burkin, Iain L.O. Buxton, Alternatively Spliced Human TREK-1 Variants Alter TREK-1 Channel Function and Localization. Biol Reprod. 2015 Nov; 93(5): 122. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712007/ (G5.5)
  6. Diane J.Sawchuck, Bernd K.Wittmann, Pre-eclampsia renamed and reframed: Intra-abdominal hypertension in pregnancy, Medical Hypotheses, Vol 83, Iss 5, Nov 2014, pp 619-632 
    http://www.sciencedirect.com/science/article/pii/S0306987714002722  (G5.6)
  7. Marybeth Lore, MD, Umbilical Cord Prolapse and Other Cord Emergencies, Citation Lore, M, Glob. libr. women’s med., (ISSN: 1756-2228) 2017; DOI 10.3843/GLOWM.10136 https://www.glowm.com/section_view/heading/Umbilical%20Cord%20Prolapse%20and%20Other%20Cord%20Emergencies/item/136 (G5.7)
  8. Elizabeth W Triche, Laura M Grosso, Kathleen Belanger, Amy S Darefsky, Neal L Benowitz, Michael B Bracken. Chocolate consumption in pregnancy and reduced likelihood of preeclampsia. Epidemiology. 2008 May;19(3):459-64. PMID: 18379424 http://www.greenmedinfo.com/article/chocolate-consumption-during-pregnancy-may-reduce-likelihood-preeclampsia (G5.8)
  9. Audrey F Saftlas, Elizabeth W Triche, Hind Beydoun, Michael B Bracken. Does chocolate intake during pregnancy reduce the risks of preeclampsia and gestational hypertension? Ann Epidemiol. 2010 Aug;20(8):584-91. PMID: 20609337  http://www.greenmedinfo.com/article/chocolate-intake-during-pregnancy-may-reduce-risks-preeclampsia-and-gestationa (G5.9)
  10. M A Williams, R W Zingheim, I B King, A M Zebelman. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology. 1995 May;6(3):232-7. PMID: 7619928 http://www.greenmedinfo.com/article/omega-3-fatty-acid-consumption-may-contribute-reduction-risk-preeclampsia (G5.10)
  11. Pumpkin Seeds versus Pumpkin Seed Oil, Activation Products Blog, https://www.activationproducts.com/blog/pumpkin-seeds-vs-pumpkin-seed-oil/ (G5.11)
  12. Yue Ma, Xiaoli Shen, Dongfeng Zhang, The Relationship between Serum Zinc Level and Preeclampsia: A Meta-Analysis. Nutrients. 2015 Sep; 7(9): 7806–7820. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586561/ (G5.12)
  13. Megan Ware, RDN, LD, What are the Health Benefits of Pumpkin Seeds?  Jan. 18, 2017, MedicalNewsToday.com, https://www.medicalnewstoday.com/articles/303864.php (G5.13)
  14. Pumpkin Seeds: Nutrition Facts, nutrition-and-you.com, https://www.nutrition-and-you.com/pumpkin-seeds.html (G5.14)
  15. L Han, S M Zhou. Selenium supplement in the prevention of pregnancy induced hypertension. Chin Med J (Engl). 1994 Nov;107(11):870-1. PMID: 7867399 http://www.greenmedinfo.com/article/selenium-supplementation-may-contribute-reduction-risk-pregnancy-induced-hyper (G5.15)
  16. Hiten D. Mistry, Carolyn A. Gill, Lesia O. Kurlak, Paul T. Seed, John E. Hesketh, Catherine Méplan, Lutz Schomburg, Lucy C. Chappell, Linda Morgan, Lucilla Poston, Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia. Free Radic Biol Med. 2015 Jan; 78: 147–155. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291148/ (G5.16)
  17. Nina Martin, Renee Montagne, U.S. has the Worst Rate of Maternal Deaths in the Developed World, May 12, 2017, NPR, https://www.npr.org/2017/05/12/528098789/u-s-has-the-worst-rate-of-maternal-deaths-in-the-developed-world (G5.17)
  18. Birth Data, National Vital Statistics System, CDC, https://www.cdc.gov/nchs/nvss/births.htm (G5.18)