High blood pressure and possible ethnic differences

On page 66 of a new book Plagues and the Paradox of Progress: Why the World is Getting Healthier in Worrisome Ways, by Thomas Bollyky, it is mentioned that early Western medical personal working in Africa in the 1920s were surprised to find no cases of hypertension/high blood pressure among the native African people. Only one native woman was known to be overweight and it was noted that she worked in a brewery which led the medical person in the document to speculate whether beer drinking could be fattening (yes it can). The first case of hypertension in a native African person wasn’t noted until the 1940s.

Question: Does the Western style of living or working or export of Western products cause hypertension in native Africans? If native Africans living in their traditional environment using their traditional diet have no risk for hypertension then what changed that caused an increased risk? This topic is also important for prenatal health as preeclampsia can include hypertension/high blood pressure and it does tend to be an increased risk for women with African American ancestry. The DASH diet may be helpful, for more on preeclampsia risk factors and possible tips for prevention or management, see Preeclampsia & TRP Channelseffectivecare.info

I’ve discussed this topic in my early days of blogging when I found a research article from ~ 1970s that noted ethnic differences in health outcomes but did not take into account possible differences in average ethnic diet at the time. (I haven’t found that article in my files yet. I will update this post if I do find it.) To get to the point directly – native African groups may have kidney differences that conserve calcium better, and possibly not conserve as much magnesium, as other ethnic groups. This would be protective when calcium was not very available in the diet but then would be an increased negative health risk if the diet contained a lot of calcium or phosphorus.

Low magnesium levels, particularly when there is also plenty of phosphorus may increase cardiovascular risks. Adequate magnesium levels are protective and elevated magnesium is unusual and may be increase cardiovascular risks. In good health the body maintains magnesium and other electrolyte levels within specific ranges. (5) Higher magnesium levels have also been associated with higher levels of potassium and of albumin, a blood plasma protein, (6), which is important for fluid balance and transport of a variety of chemicals in addition to magnesium (such as steroids, fatty acids, and thyroid hormones (wikipedia/serum albumin), about 30% of serum magnesium is carried in a non-electrically active form on proteins, primarily albumin (Clinical Biochemistry/serum magnesium) (9).

There may be differences in rate of urinary loss of albumin in different ethnic groups. With the presence of excess abdominal weight participants in a renal study of Hindustani-Surinamese, or African-Surinamese ancestry had an increased likelihood of albuminuria than participants of Dutch ancestry with the greatest risk found in the Hindustani-Surinamese group. (7) Asian Americans and African Americans were found to have better blood albumin levels in a renal study and the Asian Americans had better renal biomarkers compared to other ethnic groups in the study. (8)

When looking at hypertension and high blood pressure risk with the same diet in modern research there is a significant increased risk for African Americans to have high blood pressure and to have it occur earlier in life than in whites. (prevalence in the U.S. of hypertension in adults was “42 % for blacks and 28 % for whites,” (2011-2012)). (2)

So it is a good question – how did hypertension frequency in Africans in the 1920s change from zero to 42% for African Americans in the United States, in 2011-2012? Diet differences that were noted in 2009-2010 between white groups and African American groups were more cholesterol and sugar and less fiber, whole grains, nuts/beans/seeds, fruits and vegetables for the African Americans on average. Dairy intake was not mentioned as being significantly difference. In another research comparison calcium intake was lower on average in African Americans but so was magnesium (Table 1). (2)

Within the introduction and Diet and Blood Pressure sections of the article it is mentioned that ethnic differences in cardiovascular metabolism has been noted in African American groups and that their reduction in blood pressure when following the DASH diet was even better than the reduction in people of other ethnic background who followed the diet (it includes a magnesium rich Beans/Nuts/Seeds group as a daily/weekly recommendation). The INTERMAP study found an increased Sodium to Potassium ratio in urinary excretion and less total Potassium urinary excretion for the African American participants than white participants. (2)

Other research has also supported the idea that high blood pressure may have more to do with excess sodium (salt) intake in relation to low potassium intake than just having to do with the amount of sodium in the diet. Potassium is found in all vegetables and fruits in varying amounts, beans/nuts/seeds, and in liquid milk and yogurt. (Kidney dialysis and other patients with Chronic Kidney Disease have to avoid excess potassium so this article includes a list of potassium rich foods for the purpose of educating regarding what needs to be limited but for people of average kidney health it is a list of good sources to include in the diet: Potassium and Your CKD Diet, National Kidney Foundation.

Learning is an ongoing process, in the meantime some possible health tips for people of any ancestry:

  1. Adequate magnesium is essential for kidney and heart health and high blood pressure is an early symptom of low magnesium levels. Dietary sources may not be sufficient if intestinal absorption is poor or if renal losses are excessive. Epsom salt baths or footsoaks or magnesium chloride are topical forms. Adequate protein and phospholipids in the diet are also important to provide the albumin and other specialized transport molecules that carry magnesium and other chemicals within the vascular or other fluids of body tissue. More information about magnesium sources and symptoms of deficiency are available in a previous post: To have optimal Magnesium needs Protein and Phospholipids too.
  2. Adequate calcium and vitamin D are needed for health however excess may cause an imbalance between calcium and magnesium levels as magnesium is excreted along with excess calcium by the kidneys and less magnesium may be absorbed by the intestines as vitamin D causes increased absorption of calcium and magnesium but calcium may be more available in a modern processed food diet. For more information about vitamin D sources see: Light up your life with Vitamin D, peace-is-happy.org. Deficiency of calcium or of vitamin D can cause secondary hyperparathyroidism which can also be more common in renal failure due to excess phosphorus buildup and deficiency of active vitamin D. The healthy kidney is involved in activating vitamin D. (Secondary hyperparathyroidism, National Kidney Foundation) Calcium is plentiful in most dairy products and is also found in almonds, sesame seeds, beans, dark green leafy vegetables and other produce. Variations of a 2000 calorie menu plan shows that even a vegan diet can provide 1000 milligrams of calcium per day and a menu with dairy products can provide an excess with over 1600 milligrams of calcium, see: Healthy Hair is the Proof-of a healing diet.
  3. The DASH diet (Dietary Approach to Stop Hypertension) may help because it encourages potassium and magnesium rich vegetables, fruits, beans, nuts and seeds. Calcium is provided without being over recommended with two to three servings of dairy group foods. See example daily/weekly diet plan recommendations here: What is the DASH diet?, dashdiet.org.
  4. Adequate without excess protein helps protect the kidneys from having to overwork excreting nitrogen from excess protein breakdown. Adequate water is essential for kidney and vascular health as it helps with excretion of toxins and transport of nutrients and oxygen in the vascular system. More information about protein and water recommendations are available in a previous post: Make every day Kidney Appreciation Day.

/Disclaimer: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./

  1. Thomas Bollyky, Plagues and the Paradox of Progress: Why the World is Getting Healthier in Worrisome Ways, 2018, MIT Press, https://mitpress.mit.edu/books/plagues-and-paradox-progress
  2. Chan Q, Stamler J, Elliott P. Dietary factors and higher blood pressure in African-Americans. Curr Hypertens Rep. 2015;17(2):10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315875/“Marked ethnic differences exist in bone metabolism and development of calcified atherosclerotic plaque (CP). Relative to European-Americans, African-Americans have lower rates of osteoporosis (despite ingesting less dietary calcium), form fewer calcium-containing kidney stones and manifest skeletal resistance to PTH (1,2,3). Systemic differences in regulation of calcium and phosphorus appear to be involved (4). Related phenomena may include the markedly lower amounts of calcified CP in African-Americans, despite the presence of more severe conventional cardiovascular disease risk factors (5,6,7,8,9). Together these observations suggest biologically mediated ethnic differences in the regulation of bone and vascular health.” […]  “The DASH/DASH-Na diet BP reduction was more pronounced for blacks compared to whites [313637]. Although the DASH dietary approach has been incorporated into lifestyle changes recommended for patients with HTN [3], data show that few hypertensive Americans consume diets even modestly concordant with the DASH diet and less so for blacks [38]. Only about 19 % of individuals with known HTN from NHANES 1999–2004 had DASH-concordant diets.”
  3. Barry I. Freedman, et al, Vitamin D, Adiposity, and Calcified Atherosclerotic Plaque in African-Americans,J Clin Endocrinol Metab. 2010 March; 95(3): 1076–1083. [ncbi.nlm.nih.gov/pmc/articles/PMC2841532/?tool=pubmed]  
  4. Potassium and Your CKD Diet, National Kidney Foundation, https://www.kidney.org/atoz/content/potassium
  5. Ryota Ikee, Cardiovascular disease, mortality, and magnesium in chronic kidney disease: growing interest in magnesium-related interventions, Renal Replacement Therapy2018 4:1,   https://rrtjournal.biomedcentral.com/articles/10.1186/s41100-017-0142-7
  6. Noriaki Kurita, Tadao Akizawa, Masafumi Fukagawa, Yoshihiro Onishi, Kiyoshi Kurokawa, Shunichi Fukuhara; Contribution of dysregulated serum magnesium to mortality in hemodialysis patients with secondary hyperparathyroidism: a 3-year cohort study, Clinical Kidney Journal, Volume 8, Issue 6, 1 December 2015, Pages 744–752, https://doi.org/10.1093/ckj/sfv097
  7. van Valkengoed IG, Agyemang C, Krediet RT, Stronks K. Ethnic differences in the association between waist-to-height ratio and albumin-creatinine ratio: the observational SUNSET study. BMC Nephrol. 2012;13:26. Published 2012 May 7. doi:10.1186/1471-2369-13-26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492102/
  8. Frankenfield DL, et al., Differences in intermediate outcomes for Asian and non-Asian adult hemodialysis patients in the United States, Kidney International, Vol 64, Issue 2, Aug. 2003, pp 623-631 https://www.sciencedirect.com/science/article/pii/S0085253815493706
  9. M H Kroll, R J Elin, Relationships between magnesium and protein concentrations in serum. Clinical Chemistry Feb 1985, 31 (2) 244-246; http://clinchem.aaccjnls.org/content/31/2/244.long

Demyelination, continued.

The last post got a little long and it included a link to another health writer who was summarizing a large amount of material on the topic of demyelination – it is amazing what you can learn by reading. I only mentioned the article, (22), briefly because it was already a long post and I hadn’t checked the other writer’s references, (it is primarily all medical research from peer reviewed journals (22.1)); and some of his recommendations are not typical, however I had read of them elsewhere so it seemed thorough and well written. The truly intriguing part for me was just how many other conditions there are that may be susceptible to demyelination and increased negative symptoms due to nerve degeneration.

I have a few of the problems that were mentioned and I have had early symptoms of nerve numbness and pain in my extremities – fingertips particularly. Health is easier to maintain then to restore once chronic conditions develop. I have managed to reverse the nerve numbness and occasional pain that I was having in my fingertips but it is with several daily or weekly health habits, not just a simple take-this-medication-once-a-day solution.

The list of psychiatric conditions that may also have demyelination summarized in an article about possible ways to regenerate myelin, (22):

  • Attention deficit hyperactivity disorder
  • Depression 
  • Bipolar disorder 
  • Dyslexia 
  • Language disorders 
  • Stuttering 
  • Autism 
  • Obsessive-compulsive disorder 
  • Cognitive decline 
  • Alzheimer’s disease
  • Tourette’s syndrome 
  • Schizophrenia 
  • Tone deafness
  • Pathological lying
  • (22)

That is quite a list – protect your oligodendrocytes, because they protect your ability to think and communicate, to control your ability to control your movements and to have stable moods, reduce anxiety, and control your ability to be able to read and speak and to be able to control your impulses and ability to prevent yourself from lying or saying things you don’t intend to say, and to be able to understand that your thoughts are your own thoughts, and to be able to hear accurately. The reference given for the information is this article: [45].

Neurology is the study of the nervous system, Psychiatry or Psychology is the study of mental health and neuropsychiatry is the study of mental symptoms caused by neurological conditions.

This topic of psychiatric conditions and other conditions that may also have demyelination is also reviewed in a summary of Neurotoxicology for neurologists: (6.Neurotoxicology). Neurology is the study of the nerves and nervous system. The nervous system includes the brain and spinal cord and all of the nerves throughout the body. It is subdivided into two main categories: the Central Nervous System (CNS) refers to the brain, the spinal cord and nerves of the brain and spinal cord; and the Peripheral Nervous System (PNS) refers to the nerves throughout the rest of the body. Neurologists are medical doctors who specialize in conditions affecting the nervous system. They may focus on a subspeciality within the field of neurology (What is a neurologist?, HealthLine) Interestingly dementia, chronic headaches, and Multiple sclerosis are mentioned as possible conditions they treat but all the other psychiatric conditions mentioned in the list that may involve demyelination are not mentioned.

The overview article on Neurotoxicology does mention that psychiatric symptoms may occur in patients with neurological conditions but that the symptoms tend to be dismissed by neurologists, and are not studied in depth, so more reliable information is needed about psychiatric symptoms presenting with neurological disorders  – see “Psychiatric and behavioural disorders.” (6.Neurotoxicology) An article for neurologists goes into more detail about psychiatric symptoms that might deserve consultation with a neurologist rather than having the patient only see a psychiatrist: Neurological syndromes which can be mistaken for psychiatric conditions. Early symptoms of Multiple sclerosis for example sometimes may be mistaken for a psychiatric condition. (Neurological syndromes) Talk therapy or psychiatric medications are not going to help a patient regenerate their myelin after all. Neuropyschiatrists are neurologists that also have a degree in psychology and specialize in treating patients with mental health and behavioral symptoms related to neurological disorders. (neuropsychiatrists)

PTSD was also mentioned as a psychiatric condition that may have demyelination.[45]

Reading the article that was referenced for the list of psychiatric conditions that may also have demyelination [45] provided an additional condition that was not added to the list in the summary article about potential ways to help regenerate myelin (22) – PTSD also may involve demyelination, and confirmed the rest of the list were mentioned [45] . The article also includes more background information about the function and development of the myelin sheath in learning and behavior.

Nerves with myelin provide a much faster signal and oligodendrocytes myelinate several different nerves so there is additional benefit in signals that work in a coordinated manner to also improve speed of function. The myelination occurs over time so the phrase practice, practice, practice applies. Peak time of life to learn skills is in our youth because that is when the majority of myelination occurs -starting in early childhood and continuing until the early twenties even up to age thirty. Healing after injury or learning a new skill later in life would still require the practice, practice, practice so the speedy pathways between groups of nerve cells develop their myelin sheaths in coordinated connections. [45]

This information may help show the difficulties faced by people with PTSD or other psychiatric conditions – the brain connections are coordinated in patterns learned from traumatic memories or are stuck in Obsessive Compulsive patterns. The problem with impulse control might also make more sense if there is simply “leaky” wiring in the brain. Signals that were intended to do one thing might end up activating other behaviors because the myelin sheath is no longer functioning as expected.

A cognitive therapy technique, involving frequent practice/repetition of new ways to talk to yourself – it might help strengthen more positive neural networks with new myelin sheath connections.

Learning new patterns of thinking, replacing traumatic or anxious thoughts that were learned as a child or during a traumatic phase of life can take time and a lot of repetition but it is possible, just like it can be possible to relearn how to walk or do other basic life skills after a stroke or traumatic physical injury. A book by Shad Helmstetter, PhD discusses how to rephrase your own internal self talk to be more positive and gives examples for a number of different types of concerns. I found the technique helpful for emotional overeating and share phrases that I wrote regarding healthy eating and lifestyle and a link to the book in a previous post: “What to Say When You’re Talking to Yourself.” The recommendation that I followed was to read the statements several times every day – for a while, months even. I don’t remember how long I read them daily but it was for quite a while and I still have the little ring binder of statements that I wrote.

Often changing behavior patterns is easier when the new pattern is created first, rather then trying to stop the old first. Build the new and then the old is no longer needed.  Addition, I found the source of that idea:

“The secret of change is to focus all of your energy not on fighting the old, but on building the new.” – Socrates

A new way to think about demyelination – what is the underlying problem? Possibly excess cell death, at rates above the ability to breakdown and remove nucleotides (ATP, ADP, UTP, UDP).

The article on demyelination and cognitive disorders, [45] , also mentioned that adenosine plays a role in signaling oligodendrocytes to make myelin and an article with more information on the topic mentions that increased amounts of ATP, ADP, UTP, UDP can signal breakdown of myelin. Increased presence of those chemicals was suggested to possibly be due to increased cell death without normal clearing away of the old cellular material. And some types of Multiple sclerosis seems to involve increased levels of the enzyme that breaks down adenosine so there would be less available to signal the production of myelin. (8.adenosine in MS)

Take home point – protect against excessive cell death and/or mitochondria damage by not having excessive glutamate (11.link) or aspartate – excitatory amino acids that may be overly available in the modern processed food diet – and by having adequate magnesium to protect the cells from their interior by providing the needed energy to block ion channels in the cell membrane and prevent excessive amounts of calcium, glutamate or aspartate from being able to cross the cell membrane and enter the cell’s interior.

As usual however, it is not that simple, (not that avoiding glutamate and aspartate in the diet is easy, they are in many processed foods), other things can also cause excessive cell death.

  • Exposure to toxins in the environment or due to drug use, illicit or legal, can cause excessive cell death and lead to demyelination disorders. An overview:(6.Neurotoxicology)
  • Lack of oxygen can also be a cause. Lack of nutrients in general can increase the breakdown of cellular parts to provide enough nutrients however if malnutrition is severe and ongoing the breakdown (autophagy) can become excessive. (7.Metabolic Stress, Autophagy & Cell Death)
  • Traumatic injury and infection can increase the  rate of cell death above the level that the body’s detoxification systems can cope with clearing away the cellular material. Traumatic injury is associated with increased risk for infection for reasons that are not well understood, the immune system is considered functionally suppressed: (10.Immunobiology of Trauma) Also mentioned briefly in the Skeletal Muscle section of this overview: (6.Neurotoxicology).
  • Anything that causes excess oxidative stress may cause increased rates of mitochondria breakdown so protecting against stress is protecting the mitochondria which is protecting the cells. (7.Metabolic Stress, Autophagy & Cell Death) Mitochondria are the main energy producers within cells and make up about thirty percent of the volume of cardiac/heart cells. Other type of mitochondrial problems can also increase risk of their switching from promoting health through energy production into a mode that promotes cell death. One of the roles mitochondria play in normal health is storage of excess intracellular calcium. If the mitochondria become dysfunctional then the extra calcium is released into the cell where it can signal increased activity such as release of cannabinoids from the membranes. (9.mitochondria in CVD)

This is approaching really long again, so I am stopping here for now.

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./ 

  1. Jordan Fallis, 27 Proven Ways to Promote the Regeneration of Myelin. Feb. 18, 2017, Optimal Living Dynamics,   https://www.optimallivingdynamics.com/blog/25-proven-ways-to-promote-the-regeneration-of-myelin (22)
  2. Reference list: https://www.optimallivingdynamics.com/myelin-references (22.1)
  3. R. Douglas Fields, White Matter in Learning, Cognition, and Psychiatric DisordersTrends Neurosci. 2008 Jul; 31(7): 361–370.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486416/ [45]
  4. Butler CZeman AZJ, Neurological syndromes which can be mistaken for psychiatric conditions
  5. Anne Masi, Marilena M. DeMayo, Nicholas Glozier, Adam J. Guastella, An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neuroscience Bulletin, Vol 33, Iss 2, pp 183–193, https://link.springer.com/article/10.1007%2Fs12264-017-0100-y (autism link)
  6. Harris JBBlain PG, Neurotoxicology: what the neurologist needs to know.

    (6.Neurotoxicology)

  7. Brian J. Altman, Jeffrey C. Rathmell, Metabolic Stress in Autophagy and Cell Death Pathways. Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a008763 http://cshperspectives.cshlp.org/content/4/9/a008763.full (7.Metabolic Stress & Cell Death)
  8. Marek Cieślak, Filip Kukulski, Michał Komoszyński, Emerging Role of Extracellular Nucleotides and Adenosine in Multiple sclerosisPurinergic Signal. 2011 Dec; 7(4): 393–402.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224637/ (8.adenosine in MS)
  9. Sang-Bing Ong, Asa B. Gustafsson, New roles for mitochondria in cell death in the reperfused myocardium. Cardiovascular Research, Vol. 94, Issue 2, 1 May 2012, pp 190–196, https://academic.oup.com/cardiovascres/article/94/2/190/268169 (9.mitochondria in CVD)
  10. Dr. Daniel Remick, pre-ARC Director, Immunobiology of Trauma, pre-Affinity Research Collaborative (ARC), Boston University Medical Center, http://www.bumc.bu.edu/evanscenteribr/files/2009/07/pre-arcimmunologytrauma.pdf  (10.Immunobiology of Trauma)
  11. Howard Prentice, Jigar Pravinchandra Modi, Jang-Yen Wu, Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, Vol. 2015, Article ID 964518, 7 pages,Hindawi.com https://www.hindawi.com/journals/omcl/2015/964518/ (11.link
  12. Blaylock, R.L. (1996). Excitotoxins: The Taste That Kills. Health Press. ISBN 0-929173-25-2
  13. Blaylock, R.L. (a neurosurgeon) podcast Excitotoxinshttp://www.blaylockhealthchannel.com/bhc-ep-18-excitotoxins (Excitotoxins podcast)
  14. Excitotoxicity, Wikipedia, https://en.wikipedia.org/wiki/Excitotoxicity (Excitotoxicity)
  15. Aspartic Acid, Wikipedia, https://en.wikipedia.org/wiki/Aspartic_acid (Aspartic Acid/Aspartate)

Links on heart disease, calcium and iodine

Whether nutrient deficiencies or other metabolic imbalance is the cause is not clear or it may be a response to oxidative stress, however levels of the trace nutrients magnesium, selenium, zinc, and vitamin D3 were found to be low and the level of calcium elevated in myocardium, a type of muscle tissue in the heart. (1)

The short story – adequate nutrition is needed to support pregnancy and lactation (breast feeding) – longer duration breast feeding (6-12 months or more) is associated with less heart disease (2) and breast cancer (3risk. Increased amounts of iodine is needed for pregnancy and lactation (4) and low iodine and low selenium may be involved in breast cancer risk. (5)

A high protein diet, especially one high in dairy products is associated with more heart disease risk. (6) Background information – a high protein diet creates more work for the kidneys in order to excrete the extra nitrogen from protein that was converted into energy (ketones) (7(29) instead of being used to build muscle or other proteins.

Magnesium may help protect against calcification in heart disease in two important ways. It is needed for the kidneys to be able to excrete excess calcium. It also acts as a calcium channel blocker by providing electrical power from inside of cells or organ tissue in order to help keep excess calcium from entering the soft tissue and blood vessels through the membrane calcium channels. Medications used for hypertension include several calcium channel blockers.

Potassium is also important to protect against calcification of blood vessels by preventing increased calcium entry into the cell. The mineral is also important for preventing high blood pressure/hypertension – in addition to excess sodium/salt, too little potassium can be a problem. See excerpt with the link. (29)

Five to nine servings of vegetables or fruits per day is the recommendation for a healthy balanced diet (five) or potentially cancer preventing diet (nine). They are a good source of potassium and magnesium in addition to other trace nutrients.

Cholesterol plaque formation (atherosclerotic plaques) along vessel membrane walls may be simply acting as a coating to prevent the electrically active calcium ions from entering cells or doing other damage by plastering it in place, like plaster or spackle on dry wall. Calcium and magnesium levels in normal health are very carefully controlled by the kidneys. Lack of potassium and excess sodium may also affect the kidneys ability to excrete excess calcium.

The current understanding of atherosclerosis does not describe the role of magnesium in this way – current description: (8) and (9).

The role of potassium, magnesium and calcium in hypertension is available here: (10) and (29).

Magnesium has been found to help reduce vascular calcification (atherosclerotic plaques in blood vessels) in animal based research, (11) {and I believe in a few human research studies too but I have to find the links again. See Table 7 for a list of symptoms common to magnesium deficiency, hypertension and myocardial infarction are included: (14)} Magnesium may also help reduce prostate cancer risk or progression, (15), and low magnesium levels may be an underlying factor in the formation of cancer tumors, (18); and depression (16) can be a symptom of magnesium deficiency (14) and frequently co-occurs with other diagnoses. (17)

The short story – excess calcium may increase heart disease risk while adequate iodine, selenium, magnesium, potassium and vitamin D are all important for a healthy pregnancy, ability to lactate for a longer duration and reduce the risk of heart disease and breast cancer.

Addition, miscarriage history and history of having more than four pregnancies/four children has been associated with increased risk of heart disease for the mothers. (12) Increased losses of iodine and magnesium stores from the bones may be an underlying factor.  Premature infants born to multiparous women (women who had previous pregnancies) are more likely to have low Thyroid Stimulating Factor – which is associated with hypothyroidism which can simply be due to low iodine levels during the pregnancy. (13)

The long story is in the links below;

except for references about magnesium, potassium and vitamin D for pregnancy and breast feeding but they are also important for pregnancy and lactation. The baby may not thrive or may be fussier if the breast milk is low in essential nutrients or it may be difficult to maintain an adequate supply if the woman is malnourished.

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes. Thanks.

  1. Karl T. Weber, William B. Weglicki, Robert U. Simpson, Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium, Cardiovasc Res. 2009 Feb 15; 81(3): 500–508. https://www.ncbi.nlm.nih.gov/pubmed/18835843 (1)
  2. Katherine Lindemann, Mothers who breastfeed may be less likely to suffer from heart disease and stroke later in life, an interview with Sanne A. E. Peters, University of Oxford, Research Fellow in Epidemiology, June 21, 2017, researchgate.net blog post,   https://www.researchgate.net/blog/post/breastfeeding-may-have-long-term-health-benefits-for-mothers-too  Benefits were seen/measured with six months increments in breastfeeding duration, with a large group of Chinese mothers, “Mothers who had breastfed their babies had a nine percent lower risk of heart disease and an eight percent lower risk of stroke.” (2)
  3. Loren Lipworth, L. Reness Bailey, Dimitrios Trichopoulos,

    History of Breast-Feeding in Relation to Breast Cancer Risk: a Review of the Epidemiologic Literature, JNCI: Journal of the National Cancer Institute, Volume 92, Issue 4, 16 February 2000, Pages 302–312, https://academic.oup.com/jnci/article/92/4/302/2624708 “Overall, the evidence with respect to “ever” breast-feeding remains inconclusive, with results indicating either no association or a rather weak protective effect against breast cancer. […] It appears that the protective effect, if any, of long-term breast-feeding is stronger among, or confined to, premenopausal women. It has been hypothesized that an apparently protective effect of breast-feeding may be due to elevated breast cancer risk among women who discontinue breast-feeding or who take medication to suppress lactation; however, the evidence is limited and should be interpreted with caution” (3)

  4. Angela M. Leung, MD, MSc, Elizabeth N. Pearce, MD, MSc,* and Lewis E. Braverman, MD, Iodine Nutrition in Pregnancy an Lactation, Endocrinol Metab Clin North Am. 2011 Dec; 40(4): 765–777. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266621/  Iodine needs are increased during pregnancy and lactation and in iodine replete geographic areas breast milk levels seemed adequate for the infant’s needs. 250-290 micrograms is estimated to be needed compared to the RDA of 150 micrograms. That level did not seem adequate in geographically low area of New Zealand: ” In a recent study, the iodine needs for breastfed infants in iodine-deficient New Zealand remained inadequate even when their mothers were supplemented with 150 μg/d of iodine during the first 6 postpartum months.” (4)
  5. Peter PA Smyth, The Thyroid, Iodine and Breast CancerBreast Cancer Res. 2003; 5(5): 235–238.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314438/ Autoimmune thyroid disease and goiter is more common in patients with breast cancer. Iodine and selenium may be protective against both conditions, a review of literature rather than a study. (5)
  6. Heart Risk of High Protein Diets, June 4, 2018, The Hippocrtic Post,  https://www.hippocraticpost.com/ageing/heart-risk-of-high-protein-diets/?utm_source=website&utm_medium=webpush&utm_campaign=notifications The group of men with the highest intake of protein in percentage of total calories had increased risk of heart disease, except for protein from fish or eggs. “When they compared men who ate the most protein to those who ate the least, they found their risk of heart failure was:33 percent higher for all sources of protein;
    43 percent higher for animal protein;
    49 percent higher for dairy protein;
    17 percent higher for plant protein.” (6)
  7. Sherwin RS, Hendler RG, Felig P.,  Effect of Ketone Infusions on Amino Acid and Nitrogen Metabolism in ManJ Clin Invest. 1975 Jun;55(6):1382-90.
       https://www.ncbi.nlm.nih.gov/pubmed/1133179 (7)
  8. Isabella AlbaneseKashif KhanBianca BarrattHamood Al‐KindiAdel Schwertani, Atherosclerotic Calcification: Wnt is the Hint, Basic Science for Clinicians, February 8, 2018 Journal of the American Heart Association,  http://jaha.ahajournals.org/content/7/4/e007356 (8)
  9. The Cardiovascular System in Disease, Diseases of the Vessels, Chapter 6, Ch006-M3430.indd 4/19/2007, http://booksite.elsevier.com/samplechapters/9780723434306/9780723434306.pdf (9)
  10. Mark C. Houston MD, MS, Karen J. Harper MS, PharmD,  Potassium, Magnesium, and Calcium: Their Role in Both the Cause and Treatment of Hypertension, JCH, Vol 10, Issue 7, pp 3-11, July 2008,  https://onlinelibrary.wiley.com/doi/full/10.1111/j.1751-7176.2008.08575.x (10)
  11. Fatih Kircelli, Mirjam E. Peter, Ebru Sevinc Ok, Fatma Gul Celenk, Mumtaz Yilmaz, Sonja Steppan, Gulay Asci, Ercan Ok, Jutta Passlick-Deetjen, Magnesium reduces calcification in bovine vascular smooth muscle cells
    in a dose-dependent manner, Nephrol Dial Transplant (2012) 27: 514–521, https://watermark.silverchair.com/gfr321.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAZ0wggGZBgkqhkiG9w0BBwagggGKMIIBhgIBADCCAX8GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMbSRHWigPf17i-jCnAgEQgIIBUIkKsm3S-WvD5qd-tNiIBBwsoiqBg-FrbTXdm2oS2q2AdX0wuviR-rsM-hi6IMVKWwMEinUYTbh7DopBg7SWLxBIi4bHXaQft3IHdQqhDKr_RiB69uxkVRwW_2aHFGYjR0FzhUSfhDrmVLweVHZRTIYDVbrSkgaVgLnFq4YHvxohG08oMbAeF4C26XL026jpA7J1xbOodHz_o5MUvoQgVcxwhrIFuu7ysxD_B7bjJehfrw6SLjkrm3Q43jrsS3vS37v_hIig_lTQyFCPe5L6UhFwlQvH1mwPIKPNituSvoob5OxY5odMFjtcXNg0Wz2tqLajbKP_Cg4Rt1X0c67CLvTGMkos_d7QLKbxwiFibtfpcrPJlIfbPPEIjd4jKRI2MWFePBaQTQLnUOoC934JHOp4abLCC5jRaOAgHykzJhZPOpvgmvrgj-jJmZBtfdgW9g (11)
  12. Kashmira Gander, Having More Kids Linked to Heart Disease Risk in Mothers, According to New Study, June 4, 2018, newsweek.com, http://www.newsweek.com/kids-linked-heart-disease-risk-mothers-according-new-study-956066 (12)
  13. Kelli K Ryckman, M.S., PhD, Cassandra N Spracklen, M.S., John M Dagle, M.D., PhD., Jeffrey C Murray, M.D.Maternal Factors and Complications of Preterm Birth Associated with Neonatal Thyroid Stimulating Hormone, J Pediatr Endocrinol Metab. 2014 Sep; 27(0): 929–938. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260397/ “Maternal and neonatal thyroid levels are tightly correlated and hypothyroidism …. Multiparous women had infants with lower TSH levels (P=8×10−4) compared to …” (13)

  14. R. Swaminathan, Magnesium Metabolism and Its Disorders, Clin Biochem Rev. 2003 May; 24(2): 47–66.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855626/ (14)
  15. Oseni, Saheed & Quiroz, Elsa & Kumi-Diaka, Jim. (2016). Chemopreventive Effects of Magnesium Chloride Supplementation on Hormone Independent Prostate Cancer Cells. Functional Foods in Health and Disease. 6. 1-15.  https://www.researchgate.net/publication/291164181_Chemopreventive_Effects_of_Magnesium_Chloride_Supplementation_on_Hormone_Independent_Prostate_Cancer_Cells (15)

  16. Eby GA, Eby KL, Rapid recovery from major depression using magnesium treatment.Med Hypotheses. 2006;67(2):362-70. Epub 2006 Mar 20. https://www.ncbi.nlm.nih.gov/pubmed/16542786 (16

  17. Hee-Ju Kang, Seon-Young Kim, Kyung-Yeol Bae, Sung-Wan Kim, Il-Seon Shin, Jin-Sang Yoon, and Jae-Min Kim, Comorbidity of Depression with Physical Disorders: Research ad Clinical ImplicationsChonnam Med J. 2015 Apr; 51(1): 8–18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406996/ (17)
  18. : Castiglioni S, Maier JAM. Magnesium and cancer: a dangerous liason. Magnes Res 2011; 24(3): S92-S100 doi:10.1684/mrh.2011.0285   http://www.mgwater.com/Magnesium%20and%20Cancer.pdf (18)
  19.  Pharmacology of Cardiac Potassium Channels, Cardiovascular Research, Volume 62, Issue 1, 1 April 2004, Pages 9–33, Oxford Academic – see Table 4, https://academic.oup.com/cardiovascres/article/62/1/9/373105 (19)
  20. Lakshman Goonetilleke, John Quayle, TREK-1 K+ Channels in the Cardiovascular System: Their Significance and Potential as a Therapeutic Target, Cardiovascular Therapeutics 30 (2012) e23–e29  https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1755-5922.2010.00227.x (20)
  21. University of Pittsburgh: Cardiovascular system during the postpartum state in women with a history of preeclampsia, Chapter 2: Cardiovascular System,  pp 190-191, Advances in Physiology Research and Application: 2012 Edition, Scholarly EditionsDec 26, 2012, ebook, https://books.google.com/books?id=3SyvNMZLBU0C&pg=PA190&lpg=PA190&dq=TREK+1+preeclampsia&source=bl&ots=2SzKQHcFJ0&sig=fGwDeK6cMIkUXhtwPDNKqio1zIQ&hl=en&sa=X&ved=0ahUKEwirhN_h6-XbAhUSbq0KHWDZCS0Q6AEIUjAF#v=onepage&q=TREK%201%20preeclampsia&f=false (21)
  22. Ma R, Seifi M, Papanikolaou M, Brown JF, Swinny JD, Lewis A.TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders.  Front Physiol. 2018 Mar 6;9:157, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845753/ (22)
  23. Antidepressant Drugs Suppress Activity of Potassium Channels, Lawrence Berkeley National Laboratory, Feb. 8, 2011, psypost.org,  https://www.psypost.org/2011/02/antidepressant-ssri-potassium-channel-4068 (23)
  24. Nicholas J. Talley, SSRIs in IBS: Sensing a dash of disappointment. Clinical Gastroenterology and Hepatology, May 2003, Volume 1, Issue 3, Pages 155–159.  https://www.cghjournal.org/article/S1542-3565(03)70030-5/fulltext (24)
  25. Tülay Özkan Seyhan, Olgaç Bezen, Mukadder Orhan Sungur, İbrahim Kalelioğlu, Meltem Karadeniz, and Kemalettin Koltka,

    Magnesium Therapy in Pre-eclampsia Prolongs Analgesia Following Spinal Anaesthesia with Fentanyl and Bupivacaine: An Observational Study., Balkan Med J. 2014 Jun; 31(2): 143–148.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115934/ Exerimental group needed less fluid replacement and waited longer before requesting additional pain killing medication than the women with normal (no preeclampsia) deliveries. (25)

  26. Ramanathan J, Vaddadi AK, Arheart KL. Combined spinal and epidural anesthesia with low doses of intrathecal bupivacaine in women with severe preeclampsia: a preliminary report. Reg Anesth Pain Med. 2001 Jan-Feb;26(1):46-51. https://www.ncbi.nlm.nih.gov/pubmed/11172511 (26)
  27. KCNK2 potassium two pore domain channel subfamily K member 2 [ Homo sapiens (human) ], Gene ID: 3776, updated on 23-May-2018,   https://www.ncbi.nlm.nih.gov/gene/3776 (27)

     

  28. Tayyba Y Ali, Fiona Broughton Pipkin, and Raheela N Khan, The Effect of pH and Ion Channel Modulators on Human Placental Arteries. PLoS One. 2014; 9(12): e114405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260857/  “In vessels isolated from placentae of women with pre-eclampsia (n = 6), pH responses were attenuated.” (28) *attenuated means a weakened response, less responsive to the stimulus.
  29. Qi Qian, Dietary Influence on Body Fluid Acid-Base and Volume Balance: The Deleterious “Norm” Furthers and Cloaks Subclinical Pathophysiology, Nutrients 2018, 10(6), 778; Open Access, http://www.mdpi.com/2072-6643/10/6/778/htm “Recently, Sun et al. [53] demonstrated a causal role for dietary K+ in the regulation of osteogenic differentiation and calcification of vascular smooth muscle cells, both in vitro and in atherosclerotic animal models. Specifically, lower levels of extracellular fluid K+ induce vascular smooth muscle cell osteogenic transformation by elevating intracellular calcium. The latter activates CREB (cyclic AMP response element-binding protein) leading to an enhanced expression of osteogenic markers, e.g., RUNX-2, and simultaneously reduced smooth muscle cell markers, e.g., α-actin. Remarkably, even a slight serum K+ reduction (mean K+ level, 3.70 ± 0.21 mEq/L) in mice can trigger significant vessel calcification associated with elevated pulse-wave velocity, a reliable indicator of aortic stiffness. On the contrary, when K+ levels are raised to ~4.73 mEq/L by dietary modification, signs of osteogenic differentiation were abrogated, and vascular calcification prevented. Consistent with the notion of K+ being protective to vasculature, a high ratio of urine Na+/K+ excretion (indicative of high Na and low K+ intake) has recently been linked to the genesis of HTN [54].?” (29)
  30.  Robert Vink, Mihai Nechifor, editors, Magnesium in the Central Nervous System, University of Adelaide Press, 2011, adelaide.edu.au, free ebook pdf, https://www.adelaide.edu.au/press/titles/magnesium/magnesium-ebook.pdf  See page 20 re TRPM7 channels and different effects of oxidative stress on calcium versus magnesium being allowed through the ion channel. Magnesium helps survival while calcium can increase risk to the cell.  other notes about the book:   https://twitter.com/deNutrients/status/1012685811001806849?s=19