Demyelination, continued.

The last post got a little long and it included a link to another health writer who was summarizing a large amount of material on the topic of demyelination – it is amazing what you can learn by reading. I only mentioned the article, (22), briefly because it was already a long post and I hadn’t checked the other writer’s references, (it is primarily all medical research from peer reviewed journals (22.1)); and some of his recommendations are not typical, however I had read of them elsewhere so it seemed thorough and well written. The truly intriguing part for me was just how many other conditions there are that may be susceptible to demyelination and increased negative symptoms due to nerve degeneration.

I have a few of the problems that were mentioned and I have had early symptoms of nerve numbness and pain in my extremities – fingertips particularly. Health is easier to maintain then to restore once chronic conditions develop. I have managed to reverse the nerve numbness and occasional pain that I was having in my fingertips but it is with several daily or weekly health habits, not just a simple take-this-medication-once-a-day solution.

The list of psychiatric conditions that may also have demyelination summarized in an article about possible ways to regenerate myelin, (22):

  • Attention deficit hyperactivity disorder
  • Depression 
  • Bipolar disorder 
  • Dyslexia 
  • Language disorders 
  • Stuttering 
  • Autism 
  • Obsessive-compulsive disorder 
  • Cognitive decline 
  • Alzheimer’s disease
  • Tourette’s syndrome 
  • Schizophrenia 
  • Tone deafness
  • Pathological lying
  • (22)

That is quite a list – protect your oligodendrocytes, because they protect your ability to think and communicate, to control your ability to control your movements and to have stable moods, reduce anxiety, and control your ability to be able to read and speak and to be able to control your impulses and ability to prevent yourself from lying or saying things you don’t intend to say, and to be able to understand that your thoughts are your own thoughts, and to be able to hear accurately. The reference given for the information is this article: [45].

Neurology is the study of the nervous system, Psychiatry or Psychology is the study of mental health and neuropsychiatry is the study of mental symptoms caused by neurological conditions.

This topic of psychiatric conditions and other conditions that may also have demyelination is also reviewed in a summary of Neurotoxicology for neurologists: (6.Neurotoxicology). Neurology is the study of the nerves and nervous system. The nervous system includes the brain and spinal cord and all of the nerves throughout the body. It is subdivided into two main categories: the Central Nervous System (CNS) refers to the brain, the spinal cord and nerves of the brain and spinal cord; and the Peripheral Nervous System (PNS) refers to the nerves throughout the rest of the body. Neurologists are medical doctors who specialize in conditions affecting the nervous system. They may focus on a subspeciality within the field of neurology (What is a neurologist?, HealthLine) Interestingly dementia, chronic headaches, and Multiple sclerosis are mentioned as possible conditions they treat but all the other psychiatric conditions mentioned in the list that may involve demyelination are not mentioned.

The overview article on Neurotoxicology does mention that psychiatric symptoms may occur in patients with neurological conditions but that the symptoms tend to be dismissed by neurologists, and are not studied in depth, so more reliable information is needed about psychiatric symptoms presenting with neurological disorders  – see “Psychiatric and behavioural disorders.” (6.Neurotoxicology) An article for neurologists goes into more detail about psychiatric symptoms that might deserve consultation with a neurologist rather than having the patient only see a psychiatrist: Neurological syndromes which can be mistaken for psychiatric conditions. Early symptoms of Multiple sclerosis for example sometimes may be mistaken for a psychiatric condition. (Neurological syndromes) Talk therapy or psychiatric medications are not going to help a patient regenerate their myelin after all. Neuropyschiatrists are neurologists that also have a degree in psychology and specialize in treating patients with mental health and behavioral symptoms related to neurological disorders. (neuropsychiatrists)

PTSD was also mentioned as a psychiatric condition that may have demyelination.[45]

Reading the article that was referenced for the list of psychiatric conditions that may also have demyelination [45] provided an additional condition that was not added to the list in the summary article about potential ways to help regenerate myelin (22) – PTSD also may involve demyelination, and confirmed the rest of the list were mentioned [45] . The article also includes more background information about the function and development of the myelin sheath in learning and behavior.

Nerves with myelin provide a much faster signal and oligodendrocytes myelinate several different nerves so there is additional benefit in signals that work in a coordinated manner to also improve speed of function. The myelination occurs over time so the phrase practice, practice, practice applies. Peak time of life to learn skills is in our youth because that is when the majority of myelination occurs -starting in early childhood and continuing until the early twenties even up to age thirty. Healing after injury or learning a new skill later in life would still require the practice, practice, practice so the speedy pathways between groups of nerve cells develop their myelin sheaths in coordinated connections. [45]

This information may help show the difficulties faced by people with PTSD or other psychiatric conditions – the brain connections are coordinated in patterns learned from traumatic memories or are stuck in Obsessive Compulsive patterns. The problem with impulse control might also make more sense if there is simply “leaky” wiring in the brain. Signals that were intended to do one thing might end up activating other behaviors because the myelin sheath is no longer functioning as expected.

A cognitive therapy technique, involving frequent practice/repetition of new ways to talk to yourself – it might help strengthen more positive neural networks with new myelin sheath connections.

Learning new patterns of thinking, replacing traumatic or anxious thoughts that were learned as a child or during a traumatic phase of life can take time and a lot of repetition but it is possible, just like it can be possible to relearn how to walk or do other basic life skills after a stroke or traumatic physical injury. A book by Shad Helmstetter, PhD discusses how to rephrase your own internal self talk to be more positive and gives examples for a number of different types of concerns. I found the technique helpful for emotional overeating and share phrases that I wrote regarding healthy eating and lifestyle and a link to the book in a previous post: “What to Say When You’re Talking to Yourself.” The recommendation that I followed was to read the statements several times every day – for a while, months even. I don’t remember how long I read them daily but it was for quite a while and I still have the little ring binder of statements that I wrote.

Often changing behavior patterns is easier when the new pattern is created first, rather then trying to stop the old first. Build the new and then the old is no longer needed.  Addition, I found the source of that idea:

“The secret of change is to focus all of your energy not on fighting the old, but on building the new.” – Socrates

A new way to think about demyelination – what is the underlying problem? Possibly excess cell death, at rates above the ability to breakdown and remove nucleotides (ATP, ADP, UTP, UDP).

The article on demyelination and cognitive disorders, [45] , also mentioned that adenosine plays a role in signaling oligodendrocytes to make myelin and an article with more information on the topic mentions that increased amounts of ATP, ADP, UTP, UDP can signal breakdown of myelin. Increased presence of those chemicals was suggested to possibly be due to increased cell death without normal clearing away of the old cellular material. And some types of Multiple sclerosis seems to involve increased levels of the enzyme that breaks down adenosine so there would be less available to signal the production of myelin. (8.adenosine in MS)

Take home point – protect against excessive cell death and/or mitochondria damage by not having excessive glutamate (11.link) or aspartate – excitatory amino acids that may be overly available in the modern processed food diet – and by having adequate magnesium to protect the cells from their interior by providing the needed energy to block ion channels in the cell membrane and prevent excessive amounts of calcium, glutamate or aspartate from being able to cross the cell membrane and enter the cell’s interior.

As usual however, it is not that simple, (not that avoiding glutamate and aspartate in the diet is easy, they are in many processed foods), other things can also cause excessive cell death.

  • Exposure to toxins in the environment or due to drug use, illicit or legal, can cause excessive cell death and lead to demyelination disorders. An overview:(6.Neurotoxicology)
  • Lack of oxygen can also be a cause. Lack of nutrients in general can increase the breakdown of cellular parts to provide enough nutrients however if malnutrition is severe and ongoing the breakdown (autophagy) can become excessive. (7.Metabolic Stress, Autophagy & Cell Death)
  • Traumatic injury and infection can increase the  rate of cell death above the level that the body’s detoxification systems can cope with clearing away the cellular material. Traumatic injury is associated with increased risk for infection for reasons that are not well understood, the immune system is considered functionally suppressed: (10.Immunobiology of Trauma) Also mentioned briefly in the Skeletal Muscle section of this overview: (6.Neurotoxicology).
  • Anything that causes excess oxidative stress may cause increased rates of mitochondria breakdown so protecting against stress is protecting the mitochondria which is protecting the cells. (7.Metabolic Stress, Autophagy & Cell Death) Mitochondria are the main energy producers within cells and make up about thirty percent of the volume of cardiac/heart cells. Other type of mitochondrial problems can also increase risk of their switching from promoting health through energy production into a mode that promotes cell death. One of the roles mitochondria play in normal health is storage of excess intracellular calcium. If the mitochondria become dysfunctional then the extra calcium is released into the cell where it can signal increased activity such as release of cannabinoids from the membranes. (9.mitochondria in CVD)

This is approaching really long again, so I am stopping here for now.

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./ 

  1. Jordan Fallis, 27 Proven Ways to Promote the Regeneration of Myelin. Feb. 18, 2017, Optimal Living Dynamics,   https://www.optimallivingdynamics.com/blog/25-proven-ways-to-promote-the-regeneration-of-myelin (22)
  2. Reference list: https://www.optimallivingdynamics.com/myelin-references (22.1)
  3. R. Douglas Fields, White Matter in Learning, Cognition, and Psychiatric DisordersTrends Neurosci. 2008 Jul; 31(7): 361–370.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486416/ [45]
  4. Butler CZeman AZJ, Neurological syndromes which can be mistaken for psychiatric conditions
  5. Anne Masi, Marilena M. DeMayo, Nicholas Glozier, Adam J. Guastella, An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neuroscience Bulletin, Vol 33, Iss 2, pp 183–193, https://link.springer.com/article/10.1007%2Fs12264-017-0100-y (autism link)
  6. Harris JBBlain PG, Neurotoxicology: what the neurologist needs to know.

    (6.Neurotoxicology)

  7. Brian J. Altman, Jeffrey C. Rathmell, Metabolic Stress in Autophagy and Cell Death Pathways. Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a008763 http://cshperspectives.cshlp.org/content/4/9/a008763.full (7.Metabolic Stress & Cell Death)
  8. Marek Cieślak, Filip Kukulski, Michał Komoszyński, Emerging Role of Extracellular Nucleotides and Adenosine in Multiple sclerosisPurinergic Signal. 2011 Dec; 7(4): 393–402.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224637/ (8.adenosine in MS)
  9. Sang-Bing Ong, Asa B. Gustafsson, New roles for mitochondria in cell death in the reperfused myocardium. Cardiovascular Research, Vol. 94, Issue 2, 1 May 2012, pp 190–196, https://academic.oup.com/cardiovascres/article/94/2/190/268169 (9.mitochondria in CVD)
  10. Dr. Daniel Remick, pre-ARC Director, Immunobiology of Trauma, pre-Affinity Research Collaborative (ARC), Boston University Medical Center, http://www.bumc.bu.edu/evanscenteribr/files/2009/07/pre-arcimmunologytrauma.pdf  (10.Immunobiology of Trauma)
  11. Howard Prentice, Jigar Pravinchandra Modi, Jang-Yen Wu, Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, Vol. 2015, Article ID 964518, 7 pages,Hindawi.com https://www.hindawi.com/journals/omcl/2015/964518/ (11.link
  12. Blaylock, R.L. (1996). Excitotoxins: The Taste That Kills. Health Press. ISBN 0-929173-25-2
  13. Blaylock, R.L. (a neurosurgeon) podcast Excitotoxinshttp://www.blaylockhealthchannel.com/bhc-ep-18-excitotoxins (Excitotoxins podcast)
  14. Excitotoxicity, Wikipedia, https://en.wikipedia.org/wiki/Excitotoxicity (Excitotoxicity)
  15. Aspartic Acid, Wikipedia, https://en.wikipedia.org/wiki/Aspartic_acid (Aspartic Acid/Aspartate)

EMFs and Intracellular Calcium – Magnesium is nature’s calcium channel blocker

Electromagnetic fields, (EMFs) are the non-ionizing radiation that makes WiFi connections work and other devices like televisions and cellphones. The electronic details are beyond my field of experience and they are generally claimed to be harmless however research is being done on the health effects on people and other species. As more and more ‘hotspots’ become active and there is discussion of making entire regions WiFi spots the question of whether the radiation is truly harmless or not is important.

The research that has been performed suggests that the mode of action is on the ion channels in cell membranes called voltage-gated calcium channels (VGCCs). The EMF radiation seems to activate ion channels and allows the interior of the cell to fill with calcium which then can proceed to activate membrane breakdown and other actions within the cell. Oxidative stress can involve an excess of calcium within the interior of the cell which leads to other free radical chemicals – electrically active chemicals which antioxidant nutrients can help deactivate. See: (1)

Oxidation is a normal part of cell function as it is how glucose sugar energy is freed for use. Too many oxidative free radical chemicals also called, reactive oxygen species (ROS), can overpower the natural antioxidant chemical pathways and lead to increased cell damage and even cell death. (2, 3, 4)

Ion channels refer to chemicals that contain atoms that have a positive or negative charge which can be used to provide energy for chemical reactions. Ions in nature generally are found in pairs with a balance of positive and negative charges so the grouping is fairly stable. Calcium and magnesium both have ionic forms with a chemical charge of +2, which means they are missing two electrons. Sodium and potassium have ionic forms with a chemical charge of +1 – they are missing one electron each.

An ion is an atom or chemical that has more protons than electrons and carries a positive charge or has more electrons than protons and carries a negative charge, while a free radical specifically has at least one unpaired electron in its outer electron shell/valence which makes it very reactive but does not necessarily mean an electron is missing nor suggest a negative charge. Depending on their chemistry they may be able to receive or donate another electron and are very reactive, very active chemically, as the outer shell prefers to be stable chemically. The presence of an unpaired electron makes the free radical chemically encouraging other chemicals to give up or receive the unpaired electron even if the other chemical is more chemically stable. (7) The electrons in an atom are arranged around the inner ball of positively charged protons and neutrally charged neutrons in layers of electrons (valences) which prefer to be in groups of 2, 6 or 8 electrons, so a free radical with an outer layer with one electron might want to donate it while one with an outer shell with seven electrons might want to receive an extra electron.  Element valences are slightly different than what might be expected looking at the Table of Elements – here is a chart of the typical ion or free radical charges: (6)

Oxygen can carry an electrically negative charge of -2, meaning it can accept two additional electrons in its outer valence. (6) And hydrogen can accept or donate an electron, +1 or -1, (6) which chemically can result in our most important molecule for life – water, H2O, formed from two atoms of hydrogen sharing their unpaired outer electron with one atom of oxygen which wants an additional two electrons. The slight preference for different electric charges gives the molecule of water a slight polarity, the oxygen part of the water molecule has a slight negative charge on average while the hydrogen parts of the molecule have slight positive charges. (8) A more thorough description of the chemical structure of the water molecule and its electrical charge distribution with illustrations is available here: (12).

Why is this important? Because our bodies are made up of at least 70% water and electromagnetic radiation does have effects on water (9) so a basic understanding of the chemistry can help understand the more complex issues of why having region wide areas of WiFi might affect health of humans and other animals, plants and possibly even microbial life. There is evidence that microbes can modify nearby DNA via EMFs generated by the microbial DNA when both sets of DNA are in a watery dilution. (10, [1602 from ref 9]) This may increase risk of infection or cross contamination of infectious substances. We don’t know what we don’t know. The research may simply confirm the need to be concerned about Electromagnectic fields on DNA. The negative effect of EMF exposure to DNA and an increase in DNA breakdown/fragmentation was mentioned in the first link. See: (1).

Research that looked for epigenetic effects on DNA that might be associated with leukemia or other cancerous changes found that Extremely Low Frequency-Magnetic Fields which have been labeled potentially carcinogenic as some association with leukemia has been noted, did not consistently lead to epigenetic changes in the study. Changes that did occur were more likely to be found when the genetic material, called chromatin, was in a more open and active form rather than when it was in the condensed, non-replicating form. (13) Pregnancy would be a time when DNA is expected to be more active, and infancy and childhood are also times when growth and replication of cells is expected. Concerns and a review of available research about the risk of EMF radiation for adults and childhood development is discussed in a Special Section of the journal Childhood Development: (14)

Calcium channel blocker medications have been found to help reduce the effects of EMF radiation for individuals who seem to be more sensitive to ill effects from the form of radiation than the average person. See: (1)

Magnesium is nature’s calcium channel blocker so there may be an underlying deficiency of magnesium in the the people who are more sensitive to EMFs. A number of conditions can make the intestines absorb less magnesium and more calcium than average and the kidneys can be better at holding onto calcium and more likely to excrete magnesium than average. The food and water supply is not as rich in magnesium as it was during earlier centuries of human development. Magnesium deficiency as a risk factor in sensitivity to EMFs is discussed in the first link and it introduces a protective factor that can be increased with more variety of vegetables and other phytochemical rich foods in the diet – nuclear factor erythroid-2-related factor 2 (Nrf2). See: (1)

Specific foods or phytochemicals mentioned to help increase Nrf2 include:

  • sulforaphane from cruciferous vegetables, (such as broccoli and cauliflower);
  • foods high in phenolic antioxidants, (This is a large group including bright yellow and red fruits and vegetables, and deep purple produce. The group includes the subgroup flavonoids which include anthocyanins, flavonols, and it also includes the less familiar subgroup chalcones which are found in the commonly used fruits apples, pears and strawberries. The group also includes aldehydes which are found in vanilla and cinnamon, phenolic acids which include salicyclic acid, and tannins which are found in tea, coffee and wine. Baking cocoa and cherries, beans and whole grains are also mentioned, the summary point would be eat more fruits and vegetables; see: (11))
  • the long-chained omega-3 fats DHA and EPA, (salmon, tuna, sardines, krill oil, ground flax meal, walnuts, hemp seed kernels);
  • carotenoids (especially lycopene), (such as carrots, winter squash, sweet potatoes, cantaloupe, apricots, and lycopene is in tomato, watermelon, pink grapefruit, guava); 
  • sulfur compounds from allum vegetables, (such as onions, garlic, shallots, green onions); 
  • isothiocyanates from the cabbage group and
  • terpenoid-rich foods. (Terpenes are found in real lemon and lime oil, rosemary, oregano, basil and other aromatic green herbs).
  • The Mediterranean and the traditional Okinawan Diets are also mentioned as being Nrf2 promoting diets. See: (1)

A 2012 article that discusses the science known at the time and reviews cellphone cases designed to redirect EMF radiation away from the user available at the times suggests some health evidence exists but that the information is not conclusive yet but that no study has been longer than ten years. Children have less dense bone structure and may be accumulating more life time exposure so limiting use of cellphones around children or their use by children may be playing it safer until more research is available. (5) Turning off cellphones when not needed can save battery time and would be turning off the WiFi when it is not needed. You can always check for messages when you turn it back on again. Using a hard wired computer at home or at least turning off the laptop at night is recommended along with other tips in the first link. See: (1)

Disclaimer

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

The Academy of Nutrition and Dietetics has a service for locating a nutrition counselor near you at the website eatright.org: (eatright.org/find-an-expert)

  1. Joseph Mercola, The Harmful Effects of Electromagnetic Fields Explained, wakeup-world.com, Dec. 22, 2017, https://wakeup-world.com/2017/12/22/the-harmful-effects-of-electromagnetic-fields-explained/ (1)
  2. Chapter 1: Cell Injury, Cell Death,
    and Adaptations, sample, not final copy, Elsevier, pdf http://www.newagemedical.org/celldeath-injury-link2.pdf (2)
  3. Khalid Rahman, Studies on free radicals, antixidants, and co-factors., Clin Interv Aging. 2007 Jun; 2(2): 219–236., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684512/ (3)
  4. V. Lobo, A. Patil, A. Phatak, and N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn Rev. 2010 Jul-Dec; 4(8): 118–126., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249911/ (4)

  5. Joseph Hanlon, Radiation-reducing phone cases: saviours or snake oil?, Aug. 13, 2012, https://www.cnet.com/news/radiation-reducing-phone-cases-saviours-or-snake-oil/ (5)

  6. Helmenstine, Anne Marie, Ph.D. “Valences of the Elements – Chemistry Table.” ThoughtCo, Mar. 7, 2017, thoughtco.com   https://www.thoughtco.com/valences-of-the-elements-chemistry-table-606458 (6)
  7. UCSB Science Line, What is the difference between ion and radical?, 04/01/2015, http://scienceline.ucsb.edu/getkey.php?key=4833 (7)
  8. Biochemistry, Chemistry Tutorial, The Chemistry of Water, biology.arizona.edu, http://www.biology.arizona.edu/biochemistry/tutorials/chemistry/page3.html (8)
  9. Martin Chaplin, Water Structure and Science: Magnetic and electric effects on water, 2001, last update by Martin Chaplin on Nov. 3, 2017, lsbu.ac.uk http://www1.lsbu.ac.uk/water/magnetic_electric_effects.html (9)
  10. [1602 from the above reference] L. Montagnier, J. Aïssa, S. Ferris, J.-L. Montagnier, C. Lavallée, Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences, Interdisciplinary Sciences: Computational Life Sciences, 1(2009) 81-90. L. Montagnier, J. Aissa, E. Del Giudice, C. Lavallee, A. Tedeschi and G. Vitiello, DNA waves and water, Journal of Physics.: Conference Series, 306 (2011) 012007, arXiv:1012.5166v1 (10)
  11. Maria de Lourdes Reis Giada, Chapter 4: Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power, Biochemistry, Genetics and Molecular Biology » “Oxidative Stress and Chronic Degenerative Diseases – A Role for Antioxidants”, book edited by José A. Morales-González, ISBN 978-953-51-1123-8, Published: May 22, 2013    https://www.intechopen.com/books/oxidative-stress-and-chronic-degenerative-diseases-a-role-for-antioxidants/food-phenolic-compounds-main-classes-sources-and-their-antioxidant-power (11)
  12. Martin Chaplin, Water Structure and Science: Water Molecule Structure,  2000, last updated by Martin Chaplin Oct. 15, 2017, lsbu.ac.uk, http://www1.lsbu.ac.uk/water/water_molecule.html (12)
  13. Melissa Manser, Mohamad R. Abdul Sater, Christoph D. Schmid, Faiza Noreen, Manuel Murbach, Niels Kuster, David Schuermann, and Primo Schär,

    ELF-MF exposure affects the robustness of epigenetic programming during granulopoiesis, Sci Rep. 2017; 7: 43345.    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339735/ (13)

  14. Cindy Sage, Ernesto Burgio, Electromagnetic Fields, Pulsed Radiofrequency Radiation, and
    Epigenetics: How Wireless Technologies May Affect Childhood DevelopmentContemporary Mobile Technology and Child
    and Adolescent Development, edited by Zheng Yan and Lennart Hardell, A Special Section of Child Development, 2017, Pages 1–8, https://eliant.eu/fileadmin/user_upload/de/pdf/Sage_Burgio_Childhood_2017_Epigenetics.pdf (14)
  15. https://www.hindawi.com/journals/bmri/2014/741018/
  16. Editors, Robert Vink, Mihai Nechifor, Magnesium in the Central Nervous System, free downloadable ebook, University of Adelaide Press, 2011, Adelaide.edu.au/press

Springcleaning is over: Effectivecare.info, website launch

I’ve been posting a few of the first sections from the new website, effectivecare.info on the blog that is embedded within it, effectiveselfcare.info,  Having information in different formats makes the information it is trying to organize searchable in different ways.

The series on oxidative stress is skipping ahead of the main text of the new website. Read more:

  1. G3. Relaxation & Stress, (G3)
  2. the series continues in G4. Autoimmune Disease & Vitamin D, (G4),
  3. G5. Pre-eclampsia & TRP Channels, (G5)
  4. and G7. Fear & our Inner Child. (G7)
  • Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes. 
  • The Academy of Nutrition and Dietetics has a service for locating a nutrition counselor near you at the website eatright.org: (eatright.org/find-an-expert).

Increase in electromagnetic radiation may be associated with increased autism

A graph showing a similar rate of increase in electromagnetic radiation exposure and increased rates of autism can be seen around 42 minutes in the following video, Dr. Erica Mallery-Blythe – Electromagnetic Radiation, Health and Children 2014:

This type of radiation can be from wireless cell phones or laptops or from living very close, within a few miles, of high powered electric lines or power stations.

And even wirelessly connected toys might be harmful to children. [1, 2, 3] A computer or telephone that is not wireless, but is on an old-fashioned landline would not have the same level of electromagnetic radiation.

Tinfoil hats would only act as an antennae and possibly increase radiation absorption, however grounded metal foil might absorb the radiation rather than deflecting it and causing it simply to bounce around more. Water also absorbs this type of radiation which may be part of the reason electromagnetic radiation is dangerous to humans and other life forms – we are water based. [4]

A nonprofit organization of physicians who would like to increase awareness of electromagnetic hypersensitity has more information available on their website and an opportunity to join their group: http://phiremedical.org/tag/pdfs-for-electromagnetic-hypersensitivity/

I’ve filed this under calcium on this site because EMF radiation can cause an increased flow of calcium into the interior of cells which can lead to overexcitement of the cell and may lead to cell death. People with hypersensitivity to electromagnetic radiation have measurable differences in their skin in response to exposure to EMF radiation compared to non hypersensitive people. An increase in mast cells may be part of the difference between the two groups.

See this video for more information, and/or a research article by the speaker regarding electrohypersensitivity, https://www.ncbi.nlm.nih.gov/pubmed/17178584:

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.