Average Autism and Alzheimer’s Rates Differ by Gender

Autism is more of a risk for boys than girls by a factor of four boys for every one girl or three boys for every one girl diagnosed with autism depending on the type of study and diagnostic criteria. There is some speculation that autism in girls presents with less obvious symptoms than in boys. Girls with autism may have less repetitive behavior and be able to fit in socially better than boys with autism and may have less obvious focus on one main topic of interest. (1)

At the other end of the age spectrum females have a greater rate of Alzheimer’s Disease than males. (13)

The difference has been shown to be significant, not just a difference in diagnostic criteria. Estrogen is a female hormone that may be protecting girls from the risk of developing autism but then in menopause is no longer protecting older females from the risk of developing Alzheimer’s Disease. Patients with Autism and Alzheimer’s have been shown to have a tendency to have increased amounts of protein clusters (amyloid beta) in the brain which in normal health would be cleared away. An animal based study found a genetic strain of mice with a clear gender and age difference. Young male mice developed autism like symptoms and older female mice developed Alzheimer’s like symptoms.

A different study found a gender difference in the amount of a protective protein (ADNP) in young male mice with autism like symptoms and older female mice with Alzheimer’s like symptoms. (6) Complete lack of the protective protein leads to very early death with neural tube defects in animal studies.  (7) The neuroprotective protein (ADNP) seems to promote autophagy (our body’s recycling method, it makes us more energy efficient and helps detoxify/remove old cells or material such as the beta-amyloid protein for reuse, read more:  14) and the deficit of it may also be involved in schizophrenia. (8) The protein is involved with control of the dendritic branching of brain cells which is typically found to be  different in children with autism. The protein also plays a role in regulating over 400 genes involved in embryo development including ApoE and the tau protein which is found to collect in the brains of patients with Alzheimer’s Disease in addition to beta-amyloid protein. (9)

The role of apoE involves membranes, cholesterol, cannabinoid receptors and lipid rafts – chemistry geeks have fun, three dimensional drawings and a discussion of cholesterol within the brain and its role in several neurodegenerative diseases is available online in full text, the brain includes 25% of the body’s cholesterol even though the brain only accounts for 2% of the total body weight, on average. (10).  A briefer description of the role apoE plays in the brain and with estrogen and Alzheimer’s risk is available with a discussion of the gene differences that are known to increase but not guarantee risk of developing Alzheimer’s Disease. (11)

Disclosure: a genetic screening suggests I do have one of the higher risk differences in the ApoE gene. (rs2254958)

Strategies to help increase autophagy may help reverse some of the risk factors associated with reduced ApoE/reduced ADNP levels –

  1. vigorous exercise,
  2. a ketosis promoting, low carbohydrate diet, regularly or occasionally,
  3. fasting for a day or a partial day occasionally. (14)

The activity of the apoE protein on other genes can be affected by cannabinoids, too little cannabinoids may be a problem or too much.

The take home point – magnesium and adequate cannabinoids seem to be involved in helping clear the protein clusters during normal health.

  • Nutritional strategies recommended to help prevent Alzheimer’s disease include increasing intake of magnesium. Research has found that low levels of magnesium promoted build up of  beta amyloid protein while high levels of magnesium promoted breakdown of the misshapen proteins.

“Lab studies show that magnesium modulates enzymes involved in amyloid beta production; at low levels, magnesium favors amyloid beta buildup, while at higher levels it favors amyloid beta breakdown.101,102″ [2]  (from a  2014 post)

Certain genetic conditions and chronic health conditions or older age can make the body less able to make cannabinoids endogenously/internally. External sources of cannabinoids have been shown to be helpful for clearing the protein clusters involved in Alzheimer’s Disease. (https://www.sciencedaily.com/releases/2016/06/160629095609.htm)

An underlying infection with bacteria or yeast may be involved in the buildup of the protein clusters as they have a protective effect against some types of infection, so addressing low grade chronic infection may be needed to help stop the over production of the amyloid beta protein clusters in addition to providing adequate magnesium and cannabinoids. Note that there are non-euphoric cannabinoids and legal food sources in addition to medical marijuana. Pumpkin seeds are a good source, $200 billion per year is estimated to be spent on Alzheimer’s care annually at our current rate of the disease prevalence – that would buy a lot of pumpkin seeds. (15 )

That article also mentions that 192 pharmaceutical chemicals have been anticipated and tested in hope of a cure or effective treatment for Alzheimer’s Disease but which have ultimately not been found to be successful. One hundred and ninety two chemicals tested, one hundred and ninety two chemicals found ineffective – magnesium and cannabinoids however have been found effective at helping the body to naturally break down the tau and  beta-amyloid protein clumps that lead to brain damage and later symptoms of dementia in Alzheimer’s Disease and a few other neurological conditions including traumatic brain injuries and autism. (15 ) (links re tau/amyloid in autism & Alzheimers) (links re tau/amyloid protein in traumatic brain injury)

Ibuprofen is a pharmaceutical that is no longer covered by a patent and it has been found to be beneficial in protecting against Alzheimer’s Disease (link: 16) and the underlying reason is likely that ibuprofen prevents the break down of cannabinoids (17)(Search term: “ibuprofen prevents break down of cannabinoids”) – but you need cannabinoids first and some people might no longer be able to make them after a certain age or state of health or may never have been able to make them as well due to genetic differences.

So celebrate protecting your brain today by eating pumpkin seeds, cardamom spice, the herb rosemary, chocolate, or leafy green vegetables. – and the brightly colored tiny inner part of a piece of corn that you can see when eating corn on the cob is also a good source.

  • The misshapen tau/amyloid-beta proteins have a protective effect against bacteria and the yeast Candida albicans so a chronic lowgrade infection may be an underlying cause of the accumulation of beta amyloid placques. [3] [4] (from a  2014 post)

There are many more legal food sources of cannabinoids or a precursor available, a longer list is included below. The progression of Alzheimer’s Disease can take twenty years before symptoms are obvious, so getting an early start on protecting against the tau/beta-amyloid protein build-up makes sense to me (Disclosure, I have a direct family history of the disease in older relatives and a genetic screening suggests that I am more at risk, so I am biased towards preventing the disease in my own brain or other family members.)

Phospholipids are part of cannabinoids and other phosphorus containing nutrients are important in energy production. The phospholipids and cannabinoids are important for the health and function of skin and other membranes lining cells and organs, and/or if you care more about having a good hair day than whether you might get Alzheimer’s Disease in several decades, then the phospholipids are also important for hair growth: *The phospholipid mixture in this animal-based study was applied on the skin surface for hair loss associated with inflammatory skin dermatitis: (18)

(Additional Discloure: I am also genetically at risk for Male Pattern Baldness which became visibly apparent when my autoimmune disease was more severe, however with my switch to phospholipid rich foods my hair has since grown back and my autoimmune condition is in remission as long as I continue with my new health habits).

Other nutrients including the B vitamins, vitamin E, and zinc are also important for healthy hair growth (read more) but many of the following list would also be good sources of B vitamins, vitamin E, zinc and other trace minerals and essential omega 3 and omega 6 fatty acids. Pumpkin seeds are a good vegetarian source of zinc, otherwise the mineral is more commonly available in meats.

  • Food Sources of Phospholipids and other phospho-nutrients: Hemp seed kernels and oil; Artemisia turanica/wormwood leaf; amaranth seed; asparagus; avocado fruit or the inner kernel, dried and powdered; beans/legumes; cardamom seeds and powder; carrots; celery stalks and leaves; cocoa beans and cocoa powder, baker’s chocolate, dark chocolate and to a lesser amount milk chocolate and chocolate syrup; coconut; cumin seed/powder; fennel seed, flax seed, pine nuts; sesame seeds, pumpkin seed kernels, squash seeds; butternut squash and pumpkin; gingko leaf; grapefruit and orange juice with the pulp; Jerusalem artichoke (this is a root vegetable rather than a green artichoke); lettuce, spinach and mustard leaves and other leafy green vegetables and herbs; nuts/peanuts, cashews, walnuts; oats; okra seeds; onion root, leek leaves, garlic;  parsnip root; pomegranate seeds and pomegranate peel extract;rice, white or brown but the bran is the best source; rosemary; sorghum;  sweet potato or yam; buckwheat (a seed botanically that is not wheat and is gluten free); wheat. (G.26)

That topic took a walk around the block and picked some daisies along the way but the important message might be that eating well and exercising regularly may promote healthy hair, a fit body right now while helping maintain healthy brain function into the future. Genetic susceptibility may be involved in the rate of young males with autism and older females with autism and prevention might include more magnesium and phospholipid rich foods in the diet with a diet that is moderate in carbohydrates and regular vigorous exercise to promote autophagy to help promote the natural recycling of tau and beta-amyloid protein that tends to accumulate in the brains of people with autism and Alzheimer’s Disease. Lack of ADNP protein may lead to lack of ApoE or a genetic difference may cause reduced ApoE and the deficiency may lead to a reduced level of autophagy.

Fasting for a day or partial day occasionally or a low carbohydrate diet, even just a diet balance as low as 30% of calories, and vigorous exercise are three natural ways that may help promote autophagy – our body’s natural method for removing and reusing old cellular material. (14) Those strategies might help a woman with Alzheimer’s risk but for an infant or toddler may need to be adapted to simply allowing vigorous, safe play, and a diet that with a greater percentage of healthy fats than average. The list of phosphonutrient rich foods are generally healthy and safe for prenatal diets or other stages of life and would likely promote a fit body and healthy hair for a person of any age and gender – and what is good for the hair is good for other membranes throughout the body and is also good for the brain. The hair is a protein that is a modified form of skin tissue and so is fingernail protein – beauty is more than skin deep.

Some daisies.

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes. Thanks.

  1. Sarah Deweerdt,  Estimate of autism’s sex ratio reaches new low, April 27, 2017,  spectrumnews.org https://www.spectrumnews.org/news/estimate-autisms-sex-ratio-reaches-new-low/ 
  2. Liam Hawkins, Nutritional Strategies and Alzheimers, March 2013 lifeextension.com, http://www.lifeextension.com/magazine/2013/3/Nutritional-Strategies-to-Combat-Alzheimers/Page-02
  3. Lisa Conrick, What is Causing Beta-Amyloid Production in Alzheimer’s and Autism?, Oct. 23, 2012, ageofautism.com, http://www.ageofautism.com/2012/10/what-is-causing-beta-amyloid-production-in-alzheimers-and-autism.html
  4. Molnar Mark, Alzheimer’s Disease Emerging Role of Infection,  http://miklossy.ch/
  5. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-beta peptide. J Alzheimers Dis. 2010;20 Suppl 2:S527-33. https://www.ncbi.nlm.nih.gov/pubmed/20442496
  6. Activity-dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer’s pathologies. Transl Psychiatry. 2015 Feb 3;5:e501. https://www.ncbi.nlm.nih.gov/pubmed/25646590
  7. Shmuel Mandel, Gideon RechaviIllana Gozes, Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Developmental Biology, Volume 303, Issue 2, 15 March 2007, Pages 814-824. https://www.sciencedirect.com/science/article/pii/S0012160606013960

  8. Shlomo Sragovich, Avia Merenlender‐Wagner, Illana Gozes, ADNP Plays a Key Role in Autophagy: From Autism to Schizophrenia and Alzheimer’s Disease. BioassaysVolume39, Issue 11, November 2017, Pages 1700054 https://onlinelibrary.wiley.com/doi/pdf/10.1002/bies.201700054

  9. Gozes Illana, (2015) Activity-dependent neuroprotective protein (ADNP): from autism to Alzheimer’s disease. SpringerPlus. 4. L37. 10.1186/2193-1801-4-S1-L37.  https://www.researchgate.net/publication/282802744_Activity-dependent_neuroprotective_protein_ADNP_from_autism_to_Alzheimer’s_disease
  10. M Maccarrone, G Bernardi, A Finazzi Agrò, and D Centonze, Review: Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance. British Journal of
    Pharmacology, Themed Issue: Cannabinoids in Biology and Medicine, Part I, Nov. 16, 2010. http://files.iowamedicalmarijuana.org/petition/2012/bjp-aug-2011-1379-1390.pdf
  11. Hilary Lampers, ND, 5 Reasons to Know Your APOE:  Understanding Your Alzheimer’s Disease Risk. June 13, 2016 thenatpath.com
  12. http://thenatpath.com/body/5-reasons-to-know-your-apoe/
  13. Maxwell A. Ruby, Daniel K. Nomura, Carolyn S. S. Hudak, Lara M. Mangravite, Sally Chiu, John E. Casida, and Ronald M. Krauss, Overactive endocannabinoid signaling impairs apolipoprotein E-mediated clearance of triglyceride-rich lipoproteins. Proc Natl Acad Sci U S A. 2008 Sep 23; 105(38): 14561–14566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567196/

  14. Nick English, Autophagy: The Science-Backed Way to Cleanse Your Body, July 4, 2016, greatist.com, https://greatist.com/live/autophagy-fasting-exercise
  15. Stuart W Titus, PhD, Dr. Titus’ Insights: Alzheimer’s Research and the Work of Dr. Schubert, Aug. 5, 2016, medicalmarijuanainc.com,  https://www.medicalmarijuanainc.com/dr-titus-insights-alzheimers-research-work-dr-schubert/
  16.  Neuroscientists say daily ibuprofen can prevent Alzheimer’s disease., March 26, 2018, sciencedaily.com,   https://www.sciencedaily.com/releases/2018/03/180326140239.htm

  17. K. D. Rainsford, IbuprofenDiscovery, Development and Therapeutics. 
    John Wiley & Sons, June 25, 2015, page 134, https://books.google.com/books?id=CAcLCgAAQBAJ&pg=PA134&lpg=PA134&dq=ibuprofen+prevents+break+down+of+cannabinoids&source=bl&ots=oJ_cjSrWXr&sig=yQgwSrdZOkA1MNDkbf7EF7waItY&hl=en&sa=X&ved=0ahUKEwjf7ZKPrcnaAhVlneAKHeDyAuAQ6AEIlQEwCA#v=onepage&q=ibuprofen%20prevents%20break%20down%20of%20cannabinoids&f=false
  18. Seong-Hyun Choi, Jeong-Su Moon, Byung-Suk Jeon, Yeon-Jeong Jeon, Byung-Il Yoon, and Chang-Jin Lim, Hair Growth Promoting Potential of Phospholipids Purified from Porcine Lung Tissues. Biomol Ther (Seoul). 2015 Mar; 23(2): 174–179. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354319/
  19. ADNP related syndrome FTNW, *lack of ADNP genetically leads to reduced muscle tone and can cause eating problems in children. https://www.rarechromo.org/media/information/Chromosome%2020/ADNP%20related%20syndrome%20FTNW.pdf

Autism rate is increasing at a rate faster than evolution can explain

The rate of autism in the 1970s was around 1 child in 10000. Prior to  the 1930s the disease was barely heard of and only a few children, fewer than ten, had even been documented in psychiatric medical records as having any symptoms similar to the autism spectrum symptoms. (Denial/Blaxill, Olmsted)

Around 1999 to 2000 there was a sharp increase in the rate of autism diagnosed. Changes in awareness and/or diagnosis criteria may have some impact on short term changes but the increase in rate from the 1970s is significant. Extrapolating into the future following the recent rate of change in the rate of children diagnosed with autism takes us to an estimated rate of 1 in 34 children in the year 2042. We all need to ask ourselves if now is a better time to try to prevent autism from occurring in our nation’s children or if we should wait until 2042. There are multiple risk factors including specific timing during the infant’s prenatal development, exposure to certain toxins, and nutrient deficiency and/or genetic susceptibility – complex, yes, but complex just takes a little more work to handle.

Autism Rate, U.S., Actual : 1970s-2018, Extrapolated from 2018 to 2042
U.S. Autism Rate Soars to 1 in 59 Children, SafeMinds.org

Improved screening for risk factors of mothers during perinatal and prenatal care and screening of infants and toddlers before symptoms occur could help provide individualized guidance to help reduce known risk factors associated with increased risk of developing autism.

On another website I have a start on self care steps for preventing autism and other chronic illnesses for different stages of life:

This series of pages titled as Step 1, Step 2, etc. is a draft of steps for how to prevent autism or other chronic illnesses:

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

Genetic Screenings can give guidance about potential medication adverse reactions.

I had a more complete ancestry.com genetic screening done and an independent (for research/personal use only) analysis of the raw data showed that I have an impaired ability to process drugs including olanzapine. (Note for new readers, I had a very bad reaction to that drug, and am not alone per some patient forum feedback by others who had trouble with it causing very bad mood changes when trying to stop using it. Get the genetic screening done first would be my strongly worded advice – suicide and homocide has been associated with withdrawal from the drug and it can cause diabetes and significant weight gain while using it.)  https://www.snpedia.com/index.php/gs155

Additional reference for further discussion of the advances in the use of genetic screenings for medication risk is available in a book that is already slightly dated with the rapid advances in technology but as a starting point it is helpful for an overview on the history of technological advances in the area of medical care: The Creative Destruction of Medicine: How the Digital Revolution will Create Better Health Care, by Eric Topol, M.D., 2013. Basic Books. ISBN: 978-0465061839. (1) (“Book Review…,” and summary, by Jung A Kim, RN, PhD, PubMed_2)

One of the pioneers in personal genetic screening was Esther Dyson, a venture capitalist. She quoted a colleague regarding why she agreed to be one of the first ten participants in the Personal Genome Project:

“You would no more take a drug without knowing the relevant data from your genome than you would get a blood transfusion without knowing your blood type.” [128] (1)

The future of individualized health care will include genetic screening for everyone and what isn’t addressed in the book by cardiologist and translational research specialist Eric Topol, M.D. is the use of genetic screening for individualized nutrition guidance. In addition to discovering what medications may work better or be more dangerous for an individual genetic screening can target which types of exercise or diet plans may be more or less beneficial and which nutrients may need to be restricted or supplemented more than the average guidance.

My previous genetic screening was for fewer genes but which were chosen as most commonly a problem for children on the autism spectrum – I had 11 of the 30 and the guidance led to supplements and diet changes that have helped me feel better and have better mood stability – “Methylation Cycle Defects – in me, Genetic Screening For Research Purposes Only” – at this stage it is a legal phrase as genetic screening is not considered consistent enough for use as a diagnostic tool, but my personal health is of significant interest to me.

Chronic illnesses that I may be more prone to include inflammatory intestinal disease https://www.snpedia.com/index.php/rs2241880 and other autoimmune conditions and Type 1 diabetes. I may produce less insulin than average. https://www.snpedia.com/index.php/rs7574865

and suicidal ideation with depression and/or bipolar disorder. https://www.snpedia.com/index.php/rs10748045

I may have reduced MOAO activity which means reduced breakdown of brain neurotransmitters that affect mood. rs6323(T;T)

And reduced drug metabolism which could affect dosage of some immune suppressing and cancer treatment drugs. https://www.snpedia.com/index.php/rs1800460

A few areas may increase my risk of heart disease, especially with a high fat diet, and especially if stress-related, cortisol induced,  https://www.snpedia.com/index.php/rs6318   and I may have increased risk for aortic or brain aneurysm (weak blood vessels bursting – lovely – but not really a surprise with my severe migraine history – it always felt like something was wrong with my blood vessels in one area of my brain that MRI showed I had “tortuous” twisted shaped vessels – okay – meditating calmly about all that, thanks.)   https://www.snpedia.com/index.php/rs10757278

Heart attack/cardiac arrest is at increased risk if I also have hypertension (which I don’t – magnesium rich diets are associated with reduced risk of high blood pressure). https://www.snpedia.com/index.php/rs187238

while other genetic differences may decrease my heart disease risk; and vigorous exercise may be needed for me to be able to maintain a healthy weight. I may be able to lose weight easier on a low fat diet; and more likely to gain on a high saturated fat diet. https://www.snpedia.com/index.php/rs5082

Another is associated with increased obesity risk, there may be a disruption/decrease “loss of mitochondrial thermogenesis.” – in other words, inefficient energy production by the cellular structures that turn glucose sugar into usable energy. https://www.snpedia.com/index.php/rs1421085

It involves a protein that is an enzyme and is called more simply the FTO protein or more chemically, the – “alpha-ketoglutarate-dependent dioxygenase FTO is an enzyme that in humans is encoded by the FTO gene located on chromosome 16” – Wikipedia/FTO gene. FTO stands for Fat mass and obesity-associated protein. The protein is involved in demethylating DNA/RNA strands – which means it is involved in activating other genes. Methyl groups are an Oxygen-Hydrogen group, potentially one part of the water molecule when combined with one more Hydrogen, and when a DNA/RNA genetic strand is fully methylated in any potential bonding areas then the gene is inactive, methyl groups are a little like an off switch for the gene. So to not have the FTO enzyme I would be unable to turn some genes to the active/on phase. Clinical trials/observation of patients with the genetic difference found what was not turned off was the appetite, significantly more calories (125-280 Kcal) were eaten each day compared to control group subjects who didn’t have the difference. The difference is also associated with decreased verbal fluency, frontal lobe size and an increased risk for Alzheimer’s Disease. Wikipedia/FTO gene. What to do about it is not mentioned.

I do have genes associated with an increased childhood sensitivity to bitter flavors that may become as an adult, taste that is more accustomed to the flavor. https://www.snpedia.com/index.php/gs227

The screening does show a folate, B vitamin, difference similar to that found in a more specific genetic screening designed to reveal autism related differences that I had done with a different company a few years ago. The difference would increase my need for folate as my ability to process it may be only 10-20% of normal, and the lack of folate can increase the risk of excess build up of a chemical (homocysteine) associated with heart disease risk, especially if I was also low in B12 and B6.  https://www.snpedia.com/index.php/rs1801133

I may have increased risk for breast cancer. rs2981582(C;T)

Genetic screenings are just a possibility, not a sure thing. I have a 99% likelihood of having blue eyes – but I don’t, I have green eyes.   https://www.snpedia.com/index.php/rs12913832 

Although I may have increased risk of scoliosis – which I do have a slight case of – https://www.snpedia.com/index.php/rs11190870

There is an increased chance that I’m optimistic and handle stress well – isn’t that swell? rs53576(G,G) (No link because this is a long file and it is starting to not respond, I am using a slow internet speed.)

Normal (A2/A2) Better avoidance of errors. Normal OCD risk, normal Tardive Dyskinesia risk, lower ADHD risk. Less Alcohol dependence. Higher risk of Postoperative Nausea. Lower obesity. Bupropion is effective.”  – Bupropion is a psychiatric medication that I did find helpful for years but eventually developed some side effects and stopped using it.

The genetic screening was done by ancestry.com and the raw data from the screening was processed independently (small fee) by the promethease.com website.

It may be clear that genetic screening is a complex topic and is for general health guidance rather than diagnostic purposes although the drug sensitivity information is used by medical professionals in some areas of treatment.

A couple other positive gene differences may provide me a better than average memory and muscle fibers that are better for moving fast – sprinting.

  • Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.
  1. Eric Topol, M.D,, The Creative Destruction of Medicine: How the Digital Revolution will Create Better Health Care, 2013. Basic Books. ISBN: 978-0465061839.  (1) Chapter 5, Biology: Sequencing the Genome, page 117: [128]
  2. Jung A Kim, RN, PhD, Book Review: The Creative Destruction of Medicine: How the Digital Revolution will Create Better Health CareHealth Inform Res. 2013 Sep; 19(3): 229–231.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810531/ PubMed_2)

[128] Esther Dyson, “Full Disclosure,” Wall Street Journal, July 25, 2007, A15.

Macro and Micro-nutrients, description and food sources

Nutrients:

There are two main groups of nutrients: the Macronutrients and the Micronutrients, both of which include many subgroups. Water doesn’t officially get listed in either group but it is the most essential nutrient as we are mostly water, roughly 70%, with some of the other nutrients holding us together in the form of membranes, muscles, skin and bones. Water helps the blood carry nutrients to the cells and remove waste products to be excreted by the kidneys in the form of urine. Water helps us stay cool in the form of sweat on a hot day. Water is the best thirst quencher and is what our brain expects as a beverage. In nature there is no juice tree, only whole fruit with fiber slowing down digestion of the sweet fruit juice carbohydrates. We need about eight cups of water per day, more on a hot sweaty day and more if diuretic beverages such as coffee or alcohol are consumed. Without water we wouldn’t be able to digest our macro and micro nutrients.

So drink and be merry with a glass of water, nature’s favorite thirst quencher! If you think you don’t like it you may just need to try a glass when you are very thirsty, and relax and remember how good it feels, then maybe next time you’ll reach for a glass of water because it just sounds good.

Macronutrients

Macronutrients are needed in larger amounts within a daily diet because they are used for energy and to build new cells and other body tissue. They include carbohydrates, proteins and fats.

Carbohydrates

Carbohydrates (G.18) are also known as sugars, starches, and fiber. They are all made up of individual molecules of sugars called monosaccharides (See Table 2.4 for images of all the types of monosaccharides: G.13)). Different monosaccharides can be connected to each other as disaccharides which include table sugar called sucrose, or they may be in long chains called polysaccharides which can be straight or branching in widely varied shapes.

Fiber is also made up of monosaccharides but the bond connecting them requires digestive enzymes that humans do not make, so they are considered indigestible but help with fluid balance within the small and large intestines and adequate fiber in the diet can help prevent both constipation or diarrhea. Bacteria ( known as our microbiome) within the digestive system  may be able to break down some types of fiber and convert it into more beneficial nutrients for us, called short-chain fatty acids, which are a type of fat. The types of fiber that can be converted into beneficial fats by beneficial bacteria are called prebiotics and include resistant starches, inulin, gums, pectins, and fructo-oligosaccharides.

Food Sources of Carbohydrates and Fiber: Fruits, vegetables, beans and whole grains are all sources of fiber and carbohydrates. Sources that contain a greater amount of the prebiotic fiber include garlic, onions, leeks, asparagus, Jerusalem artichokes, dandelion greens, bananas, and seaweed. Raw forms of the vegetables contain more than cooked forms except resistant starches may be increased after the food, such as rice or tapioca starch, is cooked and then chilled. (G.19) Nuts and seeds also contain some carbohydrates and fiber but are more concentrated sources of fats and protein. (G.20)

Food Sources of Monosaccharides found in Human Physiology (See Table 2.4: G.13):

  • Glucose: Honey from bees. It is one of the monosaccharides of table sugar, the sucrose disaccharide, along with a molecule of fructose. Table sugar may be made from beet sugar or sugar cane. Glucose is also one of the monosaccharides of lactose – milk sugar, and it is part of larger starches found in grains, seeds, and starchy legumes and vegetables such as beans, peas, corn, potatoes, sweet potatoes, and squash and some is found in fruits in addition to fructose. Glucose is also found in “Cocoa, Aloe Vera, Licorice, Sarsaparilla, Hawthorn, Garlic, Echinacea, Kelp.” (G.40)
  • Glucosamine: Animal cartilage released in bone broth – soup stock made with bones; supplements derived from the shells of shellfish such as shrimp, crab or lobster; a few fermented grains. (G.39) Vegetarian sources: “Shitake mushrooms and a red Japanese Algae called Dumontiaceae.” (G.40)
  • Galactose: One of the monosaccharides of lactose, milk sugar, that is found in dairy products or human milk. Some people make less of the enzyme needed to digest lactose and may require a digestive enzyme with dairy products to prevent discomfort and promote better digestion. Anyone may become temporarily lactose intolerant after a severe illness with symptoms of diarrhea as the enzyme is formed in surface cells of the intestine which may need a week or two to regrow after a severe intestinal sickness. Hard aged cheeses have a lower lactose content then soft cheeses or milk and butter products. It is also found in some fruits and vegetables, some herbs including “Echinacea, Boswellia, Fenugreek, and chestnuts.” (G.40) Sour cherries. (G.41)
  • Galactosamine: Beef or shark cartilage, and “a Red Algae called Dumontiaceae (as a constituent of dextran sulphate)” (G.40)
  • Mannose: “Gum Ghatti which is made from the sap of Indian Sumac; Black currants, red currants, cranberries, gooseberries, Aloe Vera Gel from the leaves, Fenugreek, soybeans, green beans, capsicum (Cayenne Pepper), cabbage, eggplant, tomatoes, turnip, Shittake mushrooms and kelp” (G.40) Sweet Cherries (G.41)
  • Xylose: Raspberries, cranberries. (G.15Guava, pears, berries, blackberries, loganberries, raspberries, Goji Berry; Aloe Vera, Echinacea, Boswellia; Psyllium Seeds; Broccoli, Spinach, Eggplant, Peas, Green Beans, Kelp, Okra, Cabbage, Corn.” (G.40)
  • Fucose: “Human breast milk, certain types of mushrooms, seaweed – kelp and wakane, beer yeast.” (G.40) Chanterelle and Penny Bun/porcini mushrooms. (G.42) Maitake, Shiitake, Reishi mushrooms. (G.43) Fucose in human breast milk helps a beneficial type of bacteria called Bacteroides (G.43) become established after the infant is born. It helps protect the infant from more harmful bacteria becoming established in the previously sterile intestinal tract.
  • Glucoronic Acid: Usually formed within the liver as it is a very polarized molecule. It is found in heparan sulfate, dermatin sulfate, and chondroitin 4, 6 sulfate. (G.44)
  • N-Acetylneuraminic Acid (Sialic Acid): “Human breast milk, dairy foods, whey protein isolate, and eggs.” (G.40). After infancy it is generally up to us to make it for ourselves internally. It is electrically polarized and helps stabilize vessel walls by lining the interior and repelling the opposite sides similar to magnets repelling each other.
  • Fructose is more well known then many of the other monosaccharides as it is main sugar in fruits however it is not essential for human health and excess amounts in the diet can lead to fatty liver disease. (G.46) Fructose must be processed and used within the liver similarly to how alcohol is digested.

Proteins

Proteins (G.17) are made up of molecules called amino acids which, unlike the monosaccharides, can only be connected together in straight chains. The protein chain of amino acids may spiral like the DNA molecule of genetic material or bend in some other way rather than being perfectly straight, and it can then be folded into different 3-dimensional shapes and combined with other protein chains to form larger 3-dimensional shapes. The basic structure is straight though like a string of beads or a sentence of letters.

The monosaccharides can connect to each other in multiple places and form more complex shapes like a crossword puzzle of letters or a branching tree made up of letters. This difference is important for the immune system as the complex antigen/antibody recognition seems to be based on the language spelled out by the types of monosaccharides on the antigens found on the surface of cells. Antibodies are made by immune cells to help the immune cell recognize foreign proteins or mislabeled or defective human cells. Antigens and antibodies contain monosaccharides and proteins or lipids. The combined molecules are known as glycoproteins and glycolipids. The combination makes it possible for them to do more complex chemical functions within the body than a simpler protein, carbohydrate or fat molecule. (G.14)

Food Sources of Protein: Dairy products, eggs, meats, poultry, and fish provide all the essential amino acids that humans can not convert from other molecules. Grains, beans, peas and lentils, nuts and seeds, and other vegetables provide protein but most are missing a few of the essential amino acids that we need to consume from our daily diet. (G.17) Fruits and other vegetables also provide some protein but in smaller amounts. Avocado, dried figs, melon and nectarine, artichokes, broccoli, Brussel sprouts, corn, mushrooms, spinach and potatoes are slightly better sources than other fruits and vegetables. (G.23) (G.24)

  • The nine essential amino acids are:  histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. (G.21) Beans/ legumes and nuts/seeds and grains provide balance within a meal by providing some of each of the essential amino acids. Grains are good sources of methionine, tryptophan and cysteine while legumes/beans/nuts/seeds are lower in those amino acids except for soy beans and nuts/seeds which are a good source of tryptophan. Grains, nuts, and seeds are low in isoleucine and lysine while legumes/beans are a good source of them. (G.22)
  • Conditional amino acids  may not be able to be made during illness or stress and would be required from the diet for better function and health: arginine, cysteine, glutamine, tyrosine, glycine, ornithine, proline, and serine. (G.21)
  • Non-essential amino acids can be regularly produced in the body and include: alanine, asparagine, aspartic acid, and glutamic acid. (G.21)  Excessive amounts of aspartic acid and glutamic acid from dietary sources may have negative health effects due to their ability to increase activity within brain cells and are also known as excitotoxins. Mono-sodium glutamate and other seasoning ingredients are sources of glutamic acid and the artificial sweeteners Nutrasweet/Aspartame/Neotame are sources of aspartic acid.

Fats

Fats are also known as oils, lipids, and as essential fatty acids, or trans fats which may be formed during processing of other fats or found ins some animal products naturally. The artificially produced trans fats may increase heart disease risk and it is recommended to limit their use in the daily diet. Molecules of fats can be found as short chain fatty acids or long chain fatty acids which may be then be joined into small groups called triglycerides. Branched chain amino acids are also possible but the branching is somewhat different than the type formed by monosaccharides.

The chains of fats may include more or less hydrogen molecules. Saturated fats have more hydrogen molecules, monounsaturated fats are missing one hydrogen molecule and polyunsaturated fats are missing several along the chain. The point in the molecule without a hydrogen is more reactive. Saturated fats are more stable than polyunsaturated fats. Monounsaturated fats may be more helpful for reducing risk of heart disease while saturated fats may increase risk. However we do need a variety of the types as each type is involved in different ways throughout the body. Omega 3 fatty acids and omega 6 fatty acids are polyunsaturated fats that have important roles in health and help reduce risk of chronic illness. Phospholipids are a combination of a lipid with the mineral phosphorus. They are important for helping make flexible membranes and play a role in immune health and energy metabolism. Phosphorus is also part of molecules used in energy production (ADP & ATP) and genetic structure, DNA and RNA (nucleotides) when combined with proteins or sugars.

Food Sources of Fats: Avocado, coconut, coconut oil, olives and olive oil, nuts, seeds, and oils, butter, dairy products, egg yolk, meats, poultry, fish.

While all the sources have a mixture of specific types of fats some sources have more of one or two of the types:

  • Food Sources of Saturated Fats: Animal products such as butter, cheese, and other high fat dairy products; marbled beef and higher fat processed meats; palm oil and palm kernel oil; coconut and coconut oil. The effect on the body can vary based on the source while too much of any fat is a problem the coconut products have other healthy nutrients while the palm oil and palm kernel oil may promote increased insulin levels and increase appetite. The production of palm and palm kernel oil also may be worse for the environment and cause loss of wild animal habitat. (G.27)
  • Food Sources of Mono-unsaturated Fats: Olives and olive oil, canola, sesame, safflower and sunflower oils, peanut oil and peanut butter, almonds, avocados, cashews, peanuts, eggs, red meat, tea seed oil (Camellia seed). (G.33) (G.34)
  • Food Sources of Poly-unsaturated Fats: Nuts and seeds and oils made from them; salmon and shellfish (G.28).
  • Food Sources of Trans Fats: Margarine and other products made with hydrogenated oils such as coffee creamer,(G.35), commercial baked goods such as frosted desserts or cookies, biscuits, doughnuts, crackers, microwaveable breakfast foods, microwave popcorn, frozen pizza, fried fast foods, cream filled candies. (G.36)
  • Food Sources of essential Omega-3 Fatty Acids, including EPA and DHA: Fatty fish such as sardines, tuna, herring, lake trout, and salmon, omega 3 enhanced eggs, omega 3 fortified dairy products, and seaweed,(G.37), shellfish, (G.28) krill and krill oil, (G.38), and vegetarian sources that contain a precursor include flax seeds, walnuts, canola, soybean and walnut oils, beans and tofu and other soy foods, and leafy greens.(G.37)
  • Food Sources of essential Omega-6 Fatty Acids, including Gamma Linolenic Acid (GLA): Borage oil, black currant oil, hemp seed oil; butter made from milk from cows that were grass fed; spirulina/blue-green algae. (G.25)
  • Food Sources of Phospholipids and other phospho-nutrients: Hemp seed kernels and oil; Artemisia turanica/wormwood leaf; amaranth seed; asparagus; avocado fruit or the inner kernel, dried and powdered; beans/legumes; cardamom seeds and powder; carrots; celery stalks and leaves; cocoa beans and cocoa powder, baker’s chocolate, dark chocolate and to a lesser amount milk chocolate and chocolate syrup; coconut; cumin seed/powder; fennel seed, flax seed, pine nuts; sesame seeds, pumpkin seed kernels, squash seeds; butternut squash and pumpkin; gingko leaf; grapefruit and orange juice with the pulp; Jerusalem artichoke (this is a root vegetable rather than a green artichoke); lettuce, spinach and mustard leaves and other leafy green vegetables and herbs; nuts/peanuts, cashews, walnuts; oats; okra seeds; onion root, leek leaves, garlic;  parsnip root; pomegranate seeds and pomegranate peel extract;rice, white or brown but the bran is the best source; rosemary; sorghum;  sweet potato or yam; buckwheat (a seed botanically that is not wheat and is gluten free); wheat. (G.26)

Micronutrients

Micronutrients are needed in smaller amounts within the diet and some can be stored by the body and reused so they may not be needed in the diet everyday as long as they are being eaten occasionally; while others can not be stored and are needed in the diet everyday. Micronutrients include vitamins and minerals. Minerals may be needed in slightly larger amounts or smaller amounts and the ones needed in smaller amounts are also known as trace minerals – because we only need them in trace amounts. Vitamins are grouped into fat-soluble vitamins which can be stored in the body and may not be needed in the diet everyday as long as they are included weekly or monthly depending on the nutrient. Water-soluble vitamins can not be stored and need to be included in the diet everyday for ideal health.

Minerals

Food Sources of some important Minerals:

    • Calcium: dairy products and fortified substitutes made from almond, soy, rice or hemp. Sesame seeds, almonds and other nuts, seeds and beans. Canned salmon and sardines.
    • Magnesium: oat bran, beans, nuts, seeds, whole grains, leafy green vegetables, chocolate, and molasses.
    • Phosphorus: most foods contain this nutrient, particularly dairy and protein rich foods, also cereals, nuts and beans. An excess may be provided if carbonated beverages are used regularly.
    • Potassium: all fruits and vegetables and juices are the richest sources, but animal products also contain some potassium.
    • Sodium: processed foods containing salt and added table salt are the main sources but use of “softened” water can also increase a person’s daily intake of sodium.
    • Chloride: table salt and processed foods also provide the electrolyte, chloride.
    • Iron: meat, poultry and fish and shellfish (G.28) contain a form called heme iron which is more readily absorbed. Vitamin C eaten along with whole grain or beans, nuts and seeds can help increase absorption of non-heme iron.
    • Iodine: iodized salt and processed food made with iodized salt. Seaweed and coconut products and any other produce grown near the ocean may contain more iodine than produce grown inland.
    • Selenium: selenium is also more available near coastal waters. Seafood and meat can be better sources and Brazil nuts provide more than other foods. Two Brazil nuts per day may provide the 200 mcg recommended for daily needs. Excess intake regularly may cause toxicity symptoms. One milligram or more per day may cause vomiting, loss of hair and nails and skin lesions. (Nutrition & Diet Therapy, 8th Ed.)
    • Zinc: shellfish, (G.28), beef, dairy products, nuts, beans, pumpkin seeds. (G.zinc)
  • Copper: shellfish, (G.28); organ meats such as liver and kidney; cocoa and chocolate; beans such as lentils, nuts such as almonds, sunflower seeds, potatoes, asparagus and leafy greens; mushrooms, dried fruits such as apricots and prunes; blackstrap molasses, black pepper, and yeast. (G.29) (G.30) The modern diet may tend towards too much copper and not enough zinc and the two minerals need to be in balance with each other for optimal physical and mental health. Excess copper and deficient zinc is associated with mental illness symptoms.

Vitamins

Food Sources of some important Vitamins:

    • Thiamin (B1): fortified flour or rice, whole grains, pork, beans, nuts, nutritional yeast, eggs, cantaloupe, green vegetables.
    • Riboflavin (B2): Fortified cereal, milk, eggs, meat, fish, beans, nuts, and seeds. (G.riboflavin)
    • Niacin (B3): nutritional yeast, meats, red fishes such as salmon and tuna, grains and fortified cereals, beans and seeds, milk, green leafy vegetables, coffee and tea. (G.Niacin)
    • Vitamin B6: fortified cereal, barley, buckwheat, avocados, baked potato with the skin, beef, poultry, salmon, bananas, green leafy vegetables, beans, nuts, sunflower seeds. (G.Nutritive Value of Food)
    • Folate: Fortified cereal and rice, beans, black eyed peas, green peas, grains, asparagus, green vegetables, orange juice. (G.folic-acid)
    • Vitamin B12: shellfish, (G.28), fish, meat, poultry, eggs, milk, cheese, dairy products, Nutritional or Brewer’s yeast. Vegetarians who don’t eat dairy, eggs, fish or other meat products may need a supplement of B12 or nutritional yeast, a vegan food source of vitamin B12. (G.B12)
    • Vitamin C: many fruits and vegetables and fortified juices including green peas, cabbage, potatoes and citrus fruits.
  • Vitamin D: fortified dairy products or their substitutes made from almond, soy, rice or hemp. Salmon, sardines, mushrooms. And sunshine during summer months, 15-20 minutes several times per week.
  • Vitamin E: nuts, seeds, and oils made from nuts and seeds, peanut butter, avocado, asparagus, spinach and other leafy green vegetables, pumpkin, red pepper, mango, swordfish. (G.16)
  • Vitamin K and K2,  vitamin K1 (phylloquinone) and vitamin K2 (menaquinone): Vitamin K is found in leafy green vegetables such as kale, lettuce and spinach, broccoli, Brussel sprouts, cauliflower and cabbage, and smaller amounts in fish, liver, meat, eggs and grains. (G.31) Vitamin K2 is found in animal products such as meat and dairy foods and in fermented products such as Natto, (G.32), Japanese traditional fermented soybeans, (G.45). 

Disclaimer

  • Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

The Academy of Nutrition and Dietetics has a service for locating a nutrition counselor near you at the website eatright.org: (eatright.org/find-an-expert)

See G. Links & References for the References.

G.46: Basaranoglu M, Basaranoglu G, Bugianesi E. Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr. 2015;4(2):109-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405421/

41 Jaroslava Švarc‐Gajić, Víctor Cerdà, Sabrina Clavijo, Ruth Suárez, Pavle Mašković, Aleksandra Cvetanović, Cristina Delerue‐Matos, Ana P Carvalho, Vesna Novakov, Bioactive compounds of sweet and sour cherry stems obtained by subcritical water extraction. Journal of Chemical Technology and Biotechnology, Dec. 1, 2017, https://doi.org/10.1002/jctb.5532 https://onlinelibrary.wiley.com/doi/full/10.1002/jctb.5532 (G.41) Search result not available in the abstract/paywall: “ Mannose was detected in sweet cherry stem extracts but not in sour cherry samples, whereas D-galactose was seen only in the latter. Mannose is important in human metabolism, especially in glycosylation of certain proteins and it is believed that this sugar aids in urinary tract infections.[51] Xylose”