Links on heart disease, calcium and iodine

Whether nutrient deficiencies or other metabolic imbalance is the cause is not clear or it may be a response to oxidative stress, however levels of the trace nutrients magnesium, selenium, zinc, and vitamin D3 were found to be low and the level of calcium elevated in myocardium, a type of muscle tissue in the heart. (1)

The short story – adequate nutrition is needed to support pregnancy and lactation (breast feeding) – longer duration breast feeding (6-12 months or more) is associated with less heart disease (2) and breast cancer (3risk. Increased amounts of iodine is needed for pregnancy and lactation (4) and low iodine and low selenium may be involved in breast cancer risk. (5)

A high protein diet, especially one high in dairy products is associated with more heart disease risk. (6) Background information – a high protein diet creates more work for the kidneys in order to excrete the extra nitrogen from protein that was converted into energy (ketones) (7) instead of being used to build muscle or other proteins.

Magnesium may help protect against calcification in heart disease in two important ways. It is needed for the kidneys to be able to excrete excess calcium. It also acts as a calcium channel blocker by providing electrical power from inside of cells or organ tissue in order to help keep excess calcium from entering the soft tissue and blood vessels through the membrane calcium channels. Medications used for hypertension include several calcium channel blockers.

Cholesterol plaque formation (atherosclerotic plaques) along vessel membrane walls may be simply acting as a coating to prevent the electrically active calcium ions from entering cells or doing other damage by plastering it in place, like plaster or spackle on dry wall. Calcium and magnesium levels in normal health are very carefully controlled by the kidneys. Lack of potassium and excess sodium may also affect the kidneys ability to excrete excess calcium.

The current understanding of atherosclerosis does not describe the role of magnesium in this way – current description: (8) and (9).

The role of potassium, magnesium and calcium in hypertension is available here: (10).

Magnesium has been found to help reduce vascular calcification (atherosclerotic plaques in blood vessels) in animal based research, (11) {and I believe in a few human research studies too but I have to find the links again. See Table 7 for a list of symptoms common to magnesium deficiency, hypertension and myocardial infarction are included: (14)} Magnesium may also help reduce prostate cancer risk or progression, (15), and low magnesium levels may be an underlying factor in the formation of cancer tumors, (18); and depression (16) can be a symptom of magnesium deficiency (14) and frequently co-occurs with other diagnoses. (17)

The short story – excess calcium may increase heart disease risk while adequate iodine, selenium, magnesium, potassium and vitamin D are all important for a healthy pregnancy, ability to lactate for a longer duration and reduce the risk of heart disease and breast cancer.

Addition, miscarriage history and history of having more than four pregnancies/four children has been associated with increased risk of heart disease for the mothers. (12) Increased losses of iodine and magnesium stores from the bones may be an underlying factor.  Premature infants born to multiparous women (women who had previous pregnancies) are more likely to have low Thyroid Stimulating Factor – which is associated with hypothyroidism which can simply be due to low iodine levels during the pregnancy. (13)

The long story is in the links below;

except for references about magnesium, potassium and vitamin D for pregnancy and breast feeding but they are also important for pregnancy and lactation. The baby may not thrive or may be fussier if the breast milk is low in essential nutrients or it may be difficult to maintain an adequate supply if the woman is malnourished.

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes. Thanks.

  1. Karl T. Weber, William B. Weglicki, Robert U. Simpson, Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium, Cardiovasc Res. 2009 Feb 15; 81(3): 500–508. https://www.ncbi.nlm.nih.gov/pubmed/18835843 (1)
  2. Katherine Lindemann, Mothers who breastfeed may be less likely to suffer from heart disease and stroke later in life, an interview with Sanne A. E. Peters, University of Oxford, Research Fellow in Epidemiology, June 21, 2017, researchgate.net blog post,   https://www.researchgate.net/blog/post/breastfeeding-may-have-long-term-health-benefits-for-mothers-too  Benefits were seen/measured with six months increments in breastfeeding duration, with a large group of Chinese mothers, “Mothers who had breastfed their babies had a nine percent lower risk of heart disease and an eight percent lower risk of stroke.” (2)
  3. Loren Lipworth, L. Reness Bailey, Dimitrios Trichopoulos,

    History of Breast-Feeding in Relation to Breast Cancer Risk: a Review of the Epidemiologic Literature, JNCI: Journal of the National Cancer Institute, Volume 92, Issue 4, 16 February 2000, Pages 302–312, https://academic.oup.com/jnci/article/92/4/302/2624708 “Overall, the evidence with respect to “ever” breast-feeding remains inconclusive, with results indicating either no association or a rather weak protective effect against breast cancer. […] It appears that the protective effect, if any, of long-term breast-feeding is stronger among, or confined to, premenopausal women. It has been hypothesized that an apparently protective effect of breast-feeding may be due to elevated breast cancer risk among women who discontinue breast-feeding or who take medication to suppress lactation; however, the evidence is limited and should be interpreted with caution” (3)

  4. Angela M. Leung, MD, MSc, Elizabeth N. Pearce, MD, MSc,* and Lewis E. Braverman, MD, Iodine Nutrition in Pregnancy an Lactation, Endocrinol Metab Clin North Am. 2011 Dec; 40(4): 765–777. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266621/  Iodine needs are increased during pregnancy and lactation and in iodine replete geographic areas breast milk levels seemed adequate for the infant’s needs. 250-290 micrograms is estimated to be needed compared to the RDA of 150 micrograms. That level did not seem adequate in geographically low area of New Zealand: ” In a recent study, the iodine needs for breastfed infants in iodine-deficient New Zealand remained inadequate even when their mothers were supplemented with 150 μg/d of iodine during the first 6 postpartum months.” (4)
  5. Peter PA Smyth, The Thyroid, Iodine and Breast CancerBreast Cancer Res. 2003; 5(5): 235–238.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314438/ Autoimmune thyroid disease and goiter is more common in patients with breast cancer. Iodine and selenium may be protective against both conditions, a review of literature rather than a study. (5)
  6. Heart Risk of High Protein Diets, June 4, 2018, The Hippocrtic Post,  https://www.hippocraticpost.com/ageing/heart-risk-of-high-protein-diets/?utm_source=website&utm_medium=webpush&utm_campaign=notifications The group of men with the highest intake of protein in percentage of total calories had increased risk of heart disease, except for protein from fish or eggs. “When they compared men who ate the most protein to those who ate the least, they found their risk of heart failure was:33 percent higher for all sources of protein;
    43 percent higher for animal protein;
    49 percent higher for dairy protein;
    17 percent higher for plant protein.” (6)
  7. Sherwin RS, Hendler RG, Felig P.,  Effect of Ketone Infusions on Amino Acid and Nitrogen Metabolism in ManJ Clin Invest. 1975 Jun;55(6):1382-90.
       https://www.ncbi.nlm.nih.gov/pubmed/1133179 (7)
  8. Isabella AlbaneseKashif KhanBianca BarrattHamood Al‐KindiAdel Schwertani, Atherosclerotic Calcification: Wnt is the Hint, Basic Science for Clinicians, February 8, 2018 Journal of the American Heart Association,  http://jaha.ahajournals.org/content/7/4/e007356 (8)
  9. The Cardiovascular System in Disease, Diseases of the Vessels, Chapter 6, Ch006-M3430.indd 4/19/2007, http://booksite.elsevier.com/samplechapters/9780723434306/9780723434306.pdf (9)
  10. Mark C. Houston MD, MS, Karen J. Harper MS, PharmD,  Potassium, Magnesium, and Calcium: Their Role in Both the Cause and Treatment of Hypertension, JCH, Vol 10, Issue 7, pp 3-11, July 2008,  https://onlinelibrary.wiley.com/doi/full/10.1111/j.1751-7176.2008.08575.x (10)
  11. Fatih Kircelli, Mirjam E. Peter, Ebru Sevinc Ok, Fatma Gul Celenk, Mumtaz Yilmaz, Sonja Steppan, Gulay Asci, Ercan Ok, Jutta Passlick-Deetjen, Magnesium reduces calcification in bovine vascular smooth muscle cells
    in a dose-dependent manner, Nephrol Dial Transplant (2012) 27: 514–521, https://watermark.silverchair.com/gfr321.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAZ0wggGZBgkqhkiG9w0BBwagggGKMIIBhgIBADCCAX8GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMbSRHWigPf17i-jCnAgEQgIIBUIkKsm3S-WvD5qd-tNiIBBwsoiqBg-FrbTXdm2oS2q2AdX0wuviR-rsM-hi6IMVKWwMEinUYTbh7DopBg7SWLxBIi4bHXaQft3IHdQqhDKr_RiB69uxkVRwW_2aHFGYjR0FzhUSfhDrmVLweVHZRTIYDVbrSkgaVgLnFq4YHvxohG08oMbAeF4C26XL026jpA7J1xbOodHz_o5MUvoQgVcxwhrIFuu7ysxD_B7bjJehfrw6SLjkrm3Q43jrsS3vS37v_hIig_lTQyFCPe5L6UhFwlQvH1mwPIKPNituSvoob5OxY5odMFjtcXNg0Wz2tqLajbKP_Cg4Rt1X0c67CLvTGMkos_d7QLKbxwiFibtfpcrPJlIfbPPEIjd4jKRI2MWFePBaQTQLnUOoC934JHOp4abLCC5jRaOAgHykzJhZPOpvgmvrgj-jJmZBtfdgW9g (11)
  12. Kashmira Gander, Having More Kids Linked to Heart Disease Risk in Mothers, According to New Study, June 4, 2018, newsweek.com, http://www.newsweek.com/kids-linked-heart-disease-risk-mothers-according-new-study-956066 (12)
  13. Kelli K Ryckman, M.S., PhD, Cassandra N Spracklen, M.S., John M Dagle, M.D., PhD., Jeffrey C Murray, M.D.Maternal Factors and Complications of Preterm Birth Associated with Neonatal Thyroid Stimulating Hormone, J Pediatr Endocrinol Metab. 2014 Sep; 27(0): 929–938. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260397/ “Maternal and neonatal thyroid levels are tightly correlated and hypothyroidism …. Multiparous women had infants with lower TSH levels (P=8×10−4) compared to …” (13)

  14. R. Swaminathan, Magnesium Metabolism and Its Disorders, Clin Biochem Rev. 2003 May; 24(2): 47–66.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855626/ (14)
  15. Oseni, Saheed & Quiroz, Elsa & Kumi-Diaka, Jim. (2016). Chemopreventive Effects of Magnesium Chloride Supplementation on Hormone Independent Prostate Cancer Cells. Functional Foods in Health and Disease. 6. 1-15.  https://www.researchgate.net/publication/291164181_Chemopreventive_Effects_of_Magnesium_Chloride_Supplementation_on_Hormone_Independent_Prostate_Cancer_Cells (15)

  16. Eby GA, Eby KL, Rapid recovery from major depression using magnesium treatment.Med Hypotheses. 2006;67(2):362-70. Epub 2006 Mar 20. https://www.ncbi.nlm.nih.gov/pubmed/16542786 (16

  17. Hee-Ju Kang, Seon-Young Kim, Kyung-Yeol Bae, Sung-Wan Kim, Il-Seon Shin, Jin-Sang Yoon, and Jae-Min Kim, Comorbidity of Depression with Physical Disorders: Research ad Clinical ImplicationsChonnam Med J. 2015 Apr; 51(1): 8–18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406996/ (17)
  18. : Castiglioni S, Maier JAM. Magnesium and cancer: a dangerous liason. Magnes Res 2011; 24(3): S92-S100 doi:10.1684/mrh.2011.0285   http://www.mgwater.com/Magnesium%20and%20Cancer.pdf (18)
  19.  Pharmacology of Cardiac Potassium Channels, Cardiovascular Research, Volume 62, Issue 1, 1 April 2004, Pages 9–33, Oxford Academic – see Table 4, https://academic.oup.com/cardiovascres/article/62/1/9/373105 (19)
  20. Lakshman Goonetilleke, John Quayle, TREK-1 K+ Channels in the Cardiovascular System: Their Significance and Potential as a Therapeutic Target, Cardiovascular Therapeutics 30 (2012) e23–e29  https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1755-5922.2010.00227.x (20)
  21. University of Pittsburgh: Cardiovascular system during the postpartum state in women with a history of preeclampsia, Chapter 2: Cardiovascular System,  pp 190-191, Advances in Physiology Research and Application: 2012 Edition, Scholarly EditionsDec 26, 2012, ebook, https://books.google.com/books?id=3SyvNMZLBU0C&pg=PA190&lpg=PA190&dq=TREK+1+preeclampsia&source=bl&ots=2SzKQHcFJ0&sig=fGwDeK6cMIkUXhtwPDNKqio1zIQ&hl=en&sa=X&ved=0ahUKEwirhN_h6-XbAhUSbq0KHWDZCS0Q6AEIUjAF#v=onepage&q=TREK%201%20preeclampsia&f=false (21)
  22. Ma R, Seifi M, Papanikolaou M, Brown JF, Swinny JD, Lewis A.TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders.  Front Physiol. 2018 Mar 6;9:157, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845753/ (22)
  23. Antidepressant Drugs Suppress Activity of Potassium Channels, Lawrence Berkeley National Laboratory, Feb. 8, 2011, psypost.org,  https://www.psypost.org/2011/02/antidepressant-ssri-potassium-channel-4068 (23)
  24. Nicholas J. Talley, SSRIs in IBS: Sensing a dash of disappointment. Clinical Gastroenterology and Hepatology, May 2003, Volume 1, Issue 3, Pages 155–159.  https://www.cghjournal.org/article/S1542-3565(03)70030-5/fulltext (24)
  25. Tülay Özkan Seyhan, Olgaç Bezen, Mukadder Orhan Sungur, İbrahim Kalelioğlu, Meltem Karadeniz, and Kemalettin Koltka, Balkan Med J. 2014 Jun; 31(2): 143–148.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115934/ Exerimental group needed less fluid replacement and waited longer before requesting additional pain killing medication than the women with normal (no preeclampsia) deliveries. (25)
  26. Ramanathan J, Vaddadi AK, Arheart KL. Combined spinal and epidural anesthesia with low doses of intrathecal bupivacaine in women with severe preeclampsia: a preliminary report. Reg Anesth Pain Med. 2001 Jan-Feb;26(1):46-51. https://www.ncbi.nlm.nih.gov/pubmed/11172511 (26)
  27. KCNK2 potassium two pore domain channel subfamily K member 2 [ Homo sapiens (human) ], Gene ID: 3776, updated on 23-May-2018,   https://www.ncbi.nlm.nih.gov/gene/3776 (27)

     

  28. Tayyba Y Ali, Fiona Broughton Pipkin, and Raheela N Khan, The Effect of pH and Ion Channel Modulators on Human Placental Arteries. PLoS One. 2014; 9(12): e114405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260857/  “In vessels isolated from placentae of women with pre-eclampsia (n = 6), pH responses were attenuated.” (28) *attenuated means a weakened response, less responsive to the stimulus.