Magnesium – essential for eighty percent of our body’s chemistry.

Magnesium is a trace mineral essential for 80% of body function, (muscular contractions, energy production, removal of infected or precancerous cells, etc). It is used in over 300 enzymes required for metabolism and other chemical reactions in the body such as synthesis of DNA or proteins. (1)

This post is eleven pages long and can be read as a tabbed document: (doc)

Health Conditions linked to Magnesium inadequacy.

  • Circulatory System: Hypertension, Heart Disease, Stroke, Arrhythmias, Atrial fibrillation, Dyslipedemias.
  • Metabolic: Diabetes, Metabolic Syndrome.
  • Respiratory: Asthma, COPD, Other Lung/Respiratory.
  • Central Nervous System (CNS): Depression, Anxiety, ADHD, Migraine, Pain Relief, Addiction, Sleeplessness, Stress.
  • Muscle/Skeletal: Low Back Pain, Osteoarthritis, Other musculoskeletal (~ muscle cramps, twitches, other chronic joint pain), Osteoporosis, Sarcopenia.
  • Immune System/Other: Pre-eclampsia, Kidney disease, Crohn’s Disease, Chronic Fatigue Syndrome, Colon inflammatory diseases/IBD, Inflammation, Some Cancers.
  • (todaysdietitian/Modern Day Human Magnesium Requirements)(Seelig/Rosanoff, 2003)

Magnesium and Medications

Many medications can cause loss of magnesium or affect magnesium metabolism in other ways. A list is available on the site by an organization of magnesium researcher Andrea Rosanoff, Ph.D.:, coauthor of the book The Magnesium Factor, along with Mildred Seelig, PhD.

Calcium/Magnesium ratio within cells affects our health.

When magnesium within cells is lower than normal calcium is allowed to enter in excess. Elevated amounts of calcium within the interior of cells acts as a signal to start different types of activity. Increased calcium to magnesium balance within a cell may cause different actions based on the type of cell.

  • Elevated calcium to magnesium ratio within cells could cause blood vessels to constrict which would increase blood pressure. Vasoconstriction within the heart could cause a random heart rate (arrthymias). Platelets within the blood would become stickier and more prone to clot which could increase risk of strokes.
  • Cholesterol and glucose over-production may occur in liver cells. Glucose uptake by muscle and fat cells could decrease. Insulin over-production could occur in pancreas cells. Which could lead to Type 2 Diabetes or Metabolic Syndrome.
  • (39, 40, 41, 42) (todaysdietitian/Modern Day Human Mg Requirements)

Summary Points:

  • Magnesium is essential for 80% of body function, (muscular contractions, energy production, removal of infected or precancerous cells, etc), (1),
  • Adequate protein and phospholipids (ATP-AdenosineTriPhosphate –> energy release –> ADP-AdenosineDiPhosphate) are needed for cells to be able to have a full reserve supply of magnesium. (MgATP, 6, 7, 8) Magnesium is located within cells primarily (greater than 99%, 12), as free ion or in an inactive form on molecules of protein or ATP., which means typical blood based lab tests are not helpful for diagnosing chronically low levels of magnesium. See a previous post for more information, food sources and supplement types, and a free etext reference.
  • Magnesium adequacy through diet or supplementation may help improve symptoms for patients with migraine headaches, Alzheimer’s dementia, hypertension, cardiovascular disease, recovery after a cerebrovascular stroke, and type 2 diabetes mellitus (type 2 DM). (9) Muscle cramps may be due to low magnesium levels (9) or an imbalance with calcium levels.
  • Magnesium supplementation may also help some types of psychiatric conditions such as anxiety, depression, bipolar disorder, schizophrenia. See: Magnesium and the Brain: The original chill pill, ( Mental health problems have been escalating in the U.S. and other developed countries, lack of jobs and increased social isolation and cyberbullying are involved, however magnesium/calcium imbalance are also factors. See: Latest Suicide Data Show the Depth of U.S. Mental Health Crisis, (
  • While you need adequate intake of protein for holding reserve supplies of magnesium within cells, you need adequate magnesium for the body to be able to build new proteins or modify protein structure, and to build more DNA or RNA (which uses the nucleotide ATP), (9, 10, 11, 12, 13, 14, 15) and in ATP hydrolysis (release of the stored energy from glucose metabolism in the Kreb’s cycle), (18) and the Kreb’s cycle. (7) Magnesium deficiency led to lower levels of ATP within red blood cells and increased amounts of ADP, from a 6:1 ratio of ATP:ADP to 2.5:1 at the lowest magnesium level. (19)
  • Which means supplementing only magnesium or only protein may not fully help protect against cardiovascular stroke or migraine pain or other symptoms associated with magnesium deficiency such as hypertension and Type 2 Diabetes.
  • Cancer prevention may also be possible by preventing chronic low levels of magnesium as mutations in DNA may be more likely with inadequate magnesium. Excess calcium or imbalance in vitamin D and calcium/magnesium balance may also be involved in increased cancer risk. (10, 13) Magnesium is used by white blood cells during apoptosis of infected or damaged cells and autophagy, the removal of cells by white blood cells, may help protect against Alzheimer’s dementia. Both apoptosis and autophagy are the typical defense against precancerous cells or mismarked cells that may lead to autoimmune reactions. Once cancer is established magnesium supplements would be inadequate alone as a treatment and would also be providing the nutrient to the cancer cells.

Magnesium and calcium are electrolytes – electrically active ions similar to sodium and potassium.

Magnesium is an electrically active trace mineral/metal that is predominantly found within cell fluid and bone matrix. Only about one percent of the body’s magnesium is found in the blood plasma fluid, circulating throughout the body within blood vessels, and also through the lymphatic and glymphatic systems. (Gervin 1983, ref) (interstitial fluid) Calcium is chemically electrically active in a similar way to magnesium. Both metals can donate or accept two protons and are chemically written with a +2, while sodium and potassium can donate or accept one proton which would be written as +1.

Sodium and potassium are typically referred to as electrolytes however calcium, magnesium and other electrically active ions are also found in blood plasma and in the fluid around cells, called extracellular fluid or interstitial fluid. The fluid within cells is called intracellular fluid or cytoplasm and it also contains ions/electrolytes. The balance of ions within the different types of fluid varies somewhat however the overall average is similar to the balance of ions in sea water. The total fluid volume is about 60% of our body’s weight, of that most is found within cells, 60% intracellular fluid, and of the 40% extracellular fluid, 20% is blood plasma transported in arteries and veins, and 80% is interstitial fluid, transported in the lymphatic system. (Lymphatic fluid, 4) Magnesium would be in greater concentration in the 60% intracellular fluid and calcium would be in greater concentration in the 40% extracellular fluid.

Magnesium powers membrane transport channels – a natural calcium channel blocker.

Within the cells magnesium may be used within enzymes, over 300 require the trace mineral, or may provide their electrical power to cell membrane transport channels which allow certain chemicals to enter the cell while blocking others – when adequate magnesium ions are available to block the channels including some involved in sodium/potassium balance. (16, 18) Magnesium deficiency seemed to decrease the activity of the sodium/potassium channels in an animal based study. It led to increased intracellular sodium levels which could be a mechanism for the increased risk of arrythmias (irregular heart rate) with magnesium deficiency. (17)

Magnesium in muscles and the inner ear (tinnitus).

Magnesium causes relaxation of muscles – blocking entry of calcium into the muscle fiber, and calcium entry causes muscle contractions within smooth muscle fibers (such as the muscle fibers of the gastrointestinal tract) or striated muscle fibers (found in the muscles with voluntary control such as those of the arms and legs, and also in the heart which is not under voluntary control). (31, 32, 33, 34, 35, 36, 37) Magnesium deficiency can be an underlying cause of muscle cramps or twitches (such as a nonstop twitch in the eyelids) (9), and may also be a factor in tinnitus (nonstop or intermittent ringing or buzzing sounds in the ears/ear). (28) Daily supplementation with 532 milligrams of magnesium was found helpful to relieve symptoms of tinnitus in a small clinical trial. (30) Magnesium inhibits glutamate channels which are involved in activating the hair cells of the ear canal. It may also help by helping relax blood vessels to the inner ear and increasing blood flow. (29)

Magnesium is stored within the cell in an inactive form on protein molecules or ATP.

Even within the cells the majority of magnesium stores are not available in the electrically active form. Most of the back-stock of magnesium within cells is stored on proteins or molecules of ATP (the nucleotide involved in the Kreb’s cycle production of usable energy {ATP bonds} from glucose). (MgATP, 6, 7, 8)

This means magnesium deficiency can take a long time to be seen because of the extra stored within cells on proteins and ATP and the extra stored within our bone matrix can be slowly released to continue powering the 300+ enzymes and membrane channels in every cell of the body. What happens eventually however is a depletion of the backstock of magnesium on the cellular proteins and ATP and osteoporosis can develop in the bone matrix leaving fragile bones at risk for fractures — and also cell membranes at risk to an influx of too much calcium, or other excitatory chemicals such as glutamates or aspartic acid/aspartate, leaving brain cells at increased risk from food additives, or dehydration, or ischemic stroke.

Protein deficiency in the diet or increased metabolic need for protein might increase risk of low magnesium levels being available in case of a stroke. If a stroke occurred treating with intravenous magnesium fairly soon can help reduce cell damage and preserve abilities. When the body is well supplied with protein, ATP, and magnesium then the stored magnesium would be available in case of a stroke or physical brain trauma. If protein availability was limited the damage from a stroke might be more severe due to less magnesium being available for release.

Protein-energy malnutrition is a type of malnutrition involving a diet low in protein more than calories. The condition was formerly known as kwashiorkor and was first recognized in tropical infants/children. Severe edema with a bloated abdomen is typical visible symptom. (See image, page 30, 46) When magnesium deficiency is also severe the condition is more likely to result in death and strokes are also more common. The serum magnesium level of children with protein-energy malnutrition was found to be significantly lower than in the control group. Low magnesium in drinking water has been associated with increased risk of cerebrovascular disease or death by stroke. (45)

Incomplete protein in the diet seems to be involved – plant sources of protein do not all contain adequate amounts of all the essential amino acids. Missionary work historically may have increased the risk of Protein-energy malnutrition in recently weaned toddlers due to an educational message that eating insects is wrong – eating a diet with inadequate amounts of essential amino acids is what is wrong. In modern times, unfortunately, children in Africa are now being taught to not catch and eat crickets because they are likely contaminated with the pesticides that are commonly used on farm fields.

The amino acids considered essential for a child’s diet include: Arginine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Threonine, Tryptophan, Valine. The traditional African diet in some areas includes complete protein from peanuts and cowpeas are only low in tryptophan. (46) Millet and sorghum are commonly used grains which are low in tryptophan, lysine, methionine, and threonine. (47) The nutrient content of food insects depends on their stage of growth, however on average they are considered a good source of complete protein – providing a similar ratio of essential amino acids as meat or fish. Food insects are also a good source of essential fatty acids, similar to fish, and provide fiber and trace minerals including “copper, iron, magnesium, manganese, phosphorous, selenium and zinc.” (48)

Food insects and breastmilk also have in common N-acetyl glucosamine (within insects it is found in the form of the fiber chitin which is not typically thought of as digestible by humans however the enzyme chitinase has been found in human gastric fluid). (49, p 74, section 6.1.8: 50) Intake of N-acetyl glucosamine may help support a healthy intestinal mucousal lining. Impaired mucous lining of the intestine and reduced amounts of “enterocyte heparan sulfate proteoglycan (HSPG),” and “abnormal sulfated glycosaminoglycan (GAG) metabolism” have been observed in patients with protein-energy malnutrition (kwashiorkor). (49) Providing magnesium sulfate by intramuscular injection helped survival for children with protein-energy malnutrition compared to the control group in a small clinical trial. (51)

Magnesium is needed for vitamin D, CoQ10, and cholesterol production.

Magnesium deficiency can lead to low levels of the inactive and active form of vitamin D. Magnesium supplementation is needed to reverse a type of bone degenerative condition called vitamin D resistant rickets. (20) Supplementing with vitamin D and/or calcium has been popular however the benefits against fracture risk and osteoporosis have been unclear or show little benefit. (22) The need for magnesium supplementation instead of or in addition to vitamin D and calcium supplements is in area worth further study. (21) Magnesium is also involved in earlier steps involved in vitamin D production – biosynthesis of cholesterol (23) from which vitamin D can be formed in the skin when sunshine is available.

Magnesium acts similarly to statin medications and is the natural version of a calcium channel blocker medication. (23) Statins have been prescribed to many people in hopes that chemically inhibiting the production of cholesterol would help protect against heart disease, unfortunately the theory has not been proven effective – while cholesterol levels are reduced in about half the patients using the medication, the lower cholesterol levels have not also been associated with reduced mortality from cardiovasclar risks. For patients without heart failure or renal dialysis or for those over age 75 the use of statin medications helped prevent revascularization and major coronary events in about 20% of research trials that were reviewed. (24)

The cardiovascular benefits of statin medications may be due to the inhibition of an interim step in cholesterol formation – mevalonate. Magnesium would also affect mevalonate formation however in a regulatory way – controlling whether or not the reaction happens rather than only inhibiting it. (23) β-Hydroxy β-methylglutaryl-CoA, (HMG Co A) is converted into mevalonate which then can be converted into cholesterol or the provitamin coenzyme Q10. (26)

Lack of CoQ10 may cause muscle pain and lead to mitochondrial dysfunction.

Statin medication use may cause muscle and joint pain in some users, possibly due to inhibition of Coenzyme Q10 production. Supplements of CoQ10 (200mg/day) may help reduce the muscle pain symptoms for some patients and could also be protecting against a risk of mitochondrial dysfunction caused by low levels of the the coenzyme. (25)

  • Mitochondrial dysfunction may be a cause of chronic fatigue – low energy production by mitochondria within cells would leave every function in the body with less energy to perform their jobs. Mitochondrial dysfunction may be involved in many conditions including autism, Alzheimer’s disease, muscular dystrophy, Lou Gehrig’s disease, diabetes and cancer. (clevelandclinic/mitochondrial diseases)

Magnesium helps protect health, and improve our energy level and mood.

Symptoms of magnesium deficiency are often treated with medications (such as calcium channel blockers or statins) instead of providing magnesium. Other medications commonly used to treat symptoms that might involve magnesium deficiency include: beta blockers, blood thinners, anti-hypertensive medications, insulin or metformin, anti-depressants, anti-anxiety medications, anti-inflammatory medications. (43) (todaysdietitian/Modern Day Human Magnesium Requirements)

Adequate protein and phospholipids are also needed for cells to be able to store extra magnesium in an electrically inactive form and magnesium is needed for their synthesis. This might help explain why supplements of magnesium help some patients more than others. Someone who is more chronically ill or malnourished or who has impaired metabolism may need more complete nutrition support rather than only providing a magnesium supplement. Topical supplements of magnesium may be needed for patients with malabsorption problems or for those who don’t seem to be helped by increasing dietary sources.

Excess calcium in proportion to magnesium in the diet or from supplements may also be part of the problem for some patients. (44) The average modern diet can include calcium rich dairy products at each meal and snack. Tofu, beans, almonds, sesame seeds, and dark leafy green vegetables are also good sources of calcium.

Free Continuing Education credit for nutritionists/diet techs:

  • For any dietitians or diet techs, much of the first reference list is from a free continuing education webinar, register for this: Andrea Rosanoff, PhD, and Stella Lucia Volpe, PhD, RDN, ACSM-CEP, FACSM, Recorded Webinar: Modern Day Human Magnesium Requirements: The RDN’s Role, Today’s Dietitian  The second list is from the last post from the section about magnesium and hypercoaguability.

Disclaimer: This information is being provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individualized health care guidance. Please see an individual health care provider for individual health care services.


  1. Workinger JL, Doyle RP, Bortz J. Challenges in the diagnosis of magnesium status. Nutrients. 2018;10(9):1202.
  2. Gervin CA, Nichols WM, Chvapil M, Wangensteen SL. Zinc transport by the heart lymphatic system after acute myocardial infarction., J Surg Res. 1983 Oct;35(4):340-50.
  3. Niels Fogh-Andersen, Burton M. Altura, Bella T. Altura, and Ole Siggaard-Andersen, Composition of Interstitial Fluid, Clin. Chem. 41/10, 1522-1525 (1995)
  4. Lymphatic Fluid and Immunotherapy,,
  5. Differences between blood and lymph,,
  6. Storer AC, Cornish-Bowden A. Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem J. 1976;159(1):1-5.
  7. Garfinkel L, Garfinkel D. Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium. 1985;4(2-3):60-72.
  8. Wilson JE, Chin A. Chelation of divalent cations by ATP, studied by titration calorimetry. Analytical Biochem. 1991;193(1):16-19.
  9. Volpe SL. Magnesium in disease prevention and overall health. Adv Nutr. 2013;4(3):378S383S.
  10. Abdelgawad IA, El-Mously RH, Saber MM, Mansour OA, Shouman SA. Significance of serum levels of vitamin D and some related minerals in breast cancer patients. Int J Clin Exp Pathol. 2015;8(4):4074-4082.
  11. Romani AM. Magnesium in health and disease. Met Ions Life Sci. 2013;13:49-79.
  12. Long S, Romani AM. Role of cellular magnesium in human diseases. Austin J Nutr Food Sci. 2014;2(10):1051.
  13. Rubin H. Central roles of Mg2+ and MgATP2- in the regulation of protein synthesis and cell proliferation: significance for neoplastic transformation. Adv Cancer Res. 2005;93:1-58.
  14. George GA, Heaton FW. Effect of magnesium deficiency on energy metabolism and protein synthesis by liver. Int J Biochem. 1978;9(6):421-425.
  15. Weisinger JR, Bellorin-Font E. Magnesium and phosphorus. Lancet. 1998;352(9125):391-396.
  16. Dorup I, Skajaa K, Thybo NK. Oral magnesium supplementation restores the concentrations of magnesium, potassium and sodium-potassium pumps in skeletal muscle of patients receiving diuretic treatment. J Intern Med. 1993;233(2):117-123.
  17. Fischer PW, Giroux A. Effects of dietary magnesium on sodium-potassium pump action in the heart of rats. J Nutr. 1987;117(12):2091-2095.
  18. Fagher B, Sjögren A, Monti M. A microcalorimetric study of the sodium-potassium-pump and thermogenesis in human skeletal muscle. Acta Physiol Scand. 1987;131(3):355-360.
  19. Flatman PW, Lew VL. The magnesium dependence of sodium-pump-mediated sodiumpotassium and sodium-sodium exchange in intact human red cells. J Physiol. 1981;315:421-446.
  20. Deng X, Song Y, Manson JE, et al. Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med. 2013;11:187.
  21. Rosanoff A, Dai Q, Shapses SA. Essential nutrient interactions: does low or suboptimal magnesium status interact with vitamin D and/or calcium status? Adv Nutr. 2016;7(1):25-43.
  22. Jill Jin, MD, MPH, Vitamin D and Calcium for Preventing Fractures, Guidelines, JAMA Patient Page, JAMA Network, April 17, 2018
  23. Rosanoff A, Seelig MS. Comparison of mechanism and functional effects of magnesium and statin pharmaceuticals. J Am Coll Nutr. 2004;23(5):501S-505S.
  24. Cholesterol Treatment Trialists’ Collaboration  Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials., The Lancet, Vol 393, Issue 10170, pp407-415, Feb. 02, 2019,
  25. Deichmann R, Lavie C, Andrews S. Coenzyme q10 and statin-induced mitochondrial dysfunction. Ochsner J. 2010;10(1):16–21.
  26. Pacanowski MA, Frye RF, Enogieru O, Schofield RS, Zineh I. Plasma Coenzyme Q10 Predicts Lipid-lowering Response to High-Dose Atorvastatin. J Clin Lipidol. 2008;2(4):289–297. doi:10.1016/j.jacl.2008.05.001
  27. Mitochondrial Diseases,,
  28. Tinnitus and Magnesium,,
  29. Joseph Mercola, MD, Can Magnesium Relieve Your Tinnitus?,,
  30. Cevette MJ, Barrs DM, Patel A, et al., Phase 2 study examining magnesium-dependent tinnitus., Int Tinnitus J. 2011;16(2):168-73.
  31. Zhang A, Carella A, Altura BT, Altura BM. Interactions of magnesium and chloride ions on tone and contractility of vascular muscle. Eur J Pharmacol. 1991;203(2):223-235.
  32. Altura BM, Altura BT. Role of magnesium ions in contractility of blood vessels and skeletal muscles. Magnesium Bull. 1981;3(1a):102-114.
  33. Konishi M. Cytoplasmic free concentrations of Ca2+ and Mg2+ in skeletal muscle fibers at rest and during contraction. Jpn J Physiol. 1998;48(6):421-438.
  34. Yang Z, Wang J, Altura BT, Altura BM. Extracellular magnesium deficiency induces contraction of arterial muscle: role of PI3-kinases and MAPK signaling pathways. Pflugers Arch. 2000;439(3):240-247.
  35. Yang ZW, Gebrewold A, Nowakowski M, Altura BT, Altura BM. Mg(2+)-induced endothelium-dependent relaxation of blood vessels and blood pressure lowering: role of NO. Am J Physiol Regul Integr Comp Physiol. 2000;278(3):R628-R639.
  36. Yang ZW, Wang J, Zheng T, Altura BT, Altura BM. Low Mg(2+) induces contraction and Ca(2+) rises in cerebral arteries: roles of ca(2+), PKC, and PI3. Am J Physiol Heart Circ Physiol. 2000;279(6):H2898-H2907.
  37. Turlapaty PD, Altura BM. Magnesium deficiency produces spasms of coronary arteries: relationship to etiology of sudden death ischemic heart disease. Science. 1980;208(4440):198-200.
  38. Seelig MS, Rosanoff A. The Magnesium Factor. 1st ed. New York, NY: Avery Penguin Group; 2003:278-279; 369-370
  39. Resnick L. The cellular ionic basis of hypertension and allied clinical conditions. Prog Cardiovasc Dis. 1999;42(1):1-22.
  40. Resnick LM. Ionic basis of hypertension, insulin resistance, vascular disease, and related disorders. The mechanism of “syndrome X.” Am J Hypertens. 1993;6(4):123S-134S.
  41. Rosanoff A. Nutritional magnesium is associated with metabolic syndrome, cardiovascular disease and its risk factors, and other NCDs: a bibliography. Magnesium Education website.
  42. Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev. 2012;70(3):153-164.
  43. Rosanoff A, Capron E, Barak P, Mathews B, Nielsen FH. Edible plant tissue and soil calcium:magnesium ratios: data too sparse to assess implications for human health. Crop Pasture Sci. 2015;66:1265-1277.
  44. Rosanoff A. Rising Ca:Mg intake ratio from food in USA Adults: a concern? Magnesium Res. 2010;23(4):S181-S193.
  45. Karakelleoglu C, Orbak Z, Ozturk F, Kosan C. Hypomagnesaemia as a mortality risk factor in protein-energy malnutrition. J Health Popul Nutr. 2011;29(2):181–182. doi:10.3329/jhpn.v29i2.7863
  46. Florence Dunkel, Learning from Sanambele: Role of Food Insects in Village Nutritional Health, Montana State University-Bozeman (a Power Point presentation)
  47. Sorghum and Millets in Human Nature,,
  48. The Contribution of Insects to Food Security, Livelihoods and the Environment,,
  49. Beatrice Amadi, Andrew O Fagbemi, Paul Kelly, et al., Reduced production of sulfated glycosaminoglycans occurs in Zambian children with kwashiorkor but not marasmus., The American Journal of Clinical Nutrition, Vol 89, Issue 2, Feb 2009, pp 592–600
  50. Arnold van Huis, Joost Van Itterbeeck, Harmke Klunder, et al., Edible insects: Future prospects for food and feed security, Food and Agriculture Organization of the United Nations, Rome, 2013,,
  51. Joan L.Caddell, MD., Magnesium in the therapy of protein-caloriemalnutrition of childhood., The Journal of Pediatrics, Vol 66, Issue 2, Feb 1965, pp 392-413,

Article in the lower right hand column of the Science Direct topic page on Albumin Antibody: – it has a thorough description and graphic (Figure 1) about the blood brain barrier and seizures.

  1. N. Marchi, … D. Janigro, in Encyclopedia of Basic Epilepsy Research, 2009, Inflammation: Cerebrovascular Diseases, Seizures, and Epilepsy Seizures; Epilepsy, and the Blood–Brain Barrier, “Systemic pathologies causing BBB failure may be due to hypertension, stroke, blood hyperosmolarity, or systemically mediated inflammatory processes (due to the production of TNF-α, IL-1β, IL-6, histamine, arachidonic acid, or reactive oxygen species)”

References from the last post on hypercoaguability and the NF-kB inflammatory pathway.

  1. DiNicolantonio JJ, Liu J, O’Keefe JH. Magnesium for the prevention and treatment of cardiovascular disease. Open Heart. 2018;5(2):e000775. Published 2018 Jul 1. doi:10.1136/openhrt-2018-000775
  2. Andrea Rosanoff, PhD, and Stella Lucia Volpe, PhD, RDN, ACSM-CEP, FACSM, Recorded Webinar: Modern Day Human Magnesium Requirements: The RDN’s Role, Today’s Dietitian,
  3. Karen Skene, Sarah K. Walsh, Oronne Okafor, Nadine Godsman, et al., Acute dietary zinc deficiency in rats exacerbates myocardial ischaemia–reperfusion injury through depletion of glutathione., British Journal of Nutrition, Vol 121, Issue 9 14 May 2019 , pp. 961-973,
  4. Karl T. Weber,1,* William B. Weglicki,2 and Robert U. Simpson3 Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium, Cardiovasc Res. 2009 Feb 15; 81(3): 500–508.
  5. Li YC. Vitamin D: roles in renal and cardiovascular protection. Curr Opin Nephrol Hypertens. 2012;21(1):72–79. doi:10.1097/MNH.0b013e32834de4ee
  6. Benjamin Senst; Prasanna Tadi; Hajira Basit; Arif Jan., Hypercoaguability, STATPearls, Last Update: April 29, 2019.
  7. Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy–A Review. Nutrients. 2016;8(2):68. Published 2016 Jan 28. doi:10.3390/nu8020068

World Suicide Prevention Day

First, do no harm – I share information because I have been ill, physically and mentally and managed to get better for the most part. Not one hundred percent better though, prevention is the best medicine, or second only to laughter. Mental illness is treated as if it is separate from physical health and largely the two are very connected. I have improved but it has been with many lifestyle and dietary changes – every day, or at least most days of the week. Getting a genetic screening done and finding out more specifically what was different about me also was necessary.

Metabolism is a fancy word for the body’s many chemical reactions that burn energy and use it to combine nutrients from the diet and oxygen from the air for the purpose of building and repairing cells. Most cells other than brain cells are regenerated on a regular basis. Old ones are dismantled and new ones replace them on a time cycle that varies with the type of body part. If our individual genetic coding has differences sometimes we need more or less of some nutrients and possibly additional types of chemicals that in normal health could be manufactured within normal metabolic pathways. Mental illness including depression and suicidal urges can have to do with emotional issues or history of trauma but there can also be nutrient deficiencies causing too much or too little of some types of brain neurotransmitters/messenger chemicals.

Twenty percent of adults in the U.S. have a mental illness and twenty-two percent of young adults. Magnesium deficiency can be a cause of anxiety and depression. (Magnesium: an Essential Supplement for Psychiatric Patients, PsychiatryAdvisor) Magnesium is commonly low in people with chronic pain or migraines, diabetes, and other chronic conditions too. (Dietary Magnesium Intake in a Nationals Sample of U.S. Adults, The Journal of Nutrition) Topical creams or a soak in Epsom salt may be better absorbed for people with a digestive malabsorption problem — if there is magnesium in the diet but the digestive system isn’t absorbing it then there still may be symptoms such as muscle cramps, pain, or anxiety and depression. (See previous post on magnesium)

Crisis line: Suicide Prevention Lifeline at (800) 273-8255 for confidential support 24/7, for Veterans or their families, press 1 to then reach the Veterans Crisis Line.

Other resources for LGBTQ support: see link.

Crisis lines for a variety of nations other than the U.S.: see link.

Support can be meant well but hurtful to the person in mental anguish – some commonly used statements that may make a person with suicidal thoughts or actions feel worse:

What to say – some helpful brief tips: see link.

Symptoms or other lifestyle changes in a person that may indicate risk for suicidal thoughts or actions: see link

I have no affiliation with Epsom salt companies – it just really works well.

/Disclaimer: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./

Reality check: U.S student health statistics, K – 12, a link

Mental health and chronic illness rates in the grade school and high school population of public schools has increased significantly. It is causing a problem for budgeting special needs staff for education and for nursing support for the chronic illness issues.

Read more, one part of a planned series on the topic:

A few thoughts I and others have had on the topic of special needs issues in children and adults:

Illness is a limiting factor affecting too many people in the U.S. and elsewhere. The rate of autism in children has reached 2% of U.S. children and it is a condition that was not present in the medical history of psychiatric care prior to around 1930.  (DenialBlaxill) Malnutrition of several nutrients including iodine seem to be involved based on my reading (post) so the presence of the condition after 1930 may have to due with the Great Depression’s impact on nutrition.

The planet and its nations can’t afford an increasingly ill population. We are not just overweight (or chronically ill) because we eat too much and exercise too little, some do, but why are we eating too much is the better question to ask. A healthy person has a healthy appetite that guides to balanced amount of food without counting calories and a healthy person has a healthy interest in active play or work that exercises the body. Blaming doesn’t solve problems it just denies responsibility and prevents more helpful answers from being discovered. When health statistics change as rapidly as they have in the U.S. and an increasing number of other nations then it is not a question of individual choice but of environmental changes.

Ninety percent of women are hurting on a daily or monthly basis in a way that only three percent were hurting in the 1920s – what changed? Our diet – it contains significantly less iodine and more bromine than it did prior to the 1920s. Fluoride added to the water supply to protect children’s teeth may also be part of the problem and perchlorates from products we commonly use. If too little iodine is present than the body may store bromine, chloride or fluoride in places that iodine would normally be used. The condition is considered benign and not related to breast cancer risk – except for maybe 5-20% of the people with the problem, pubmed/25970956, which if 90% of women have the problem than the math is looking unpleasant for many women.

I used to be one of the 90% but then I took extra iodine and now I’m not one of the 90% – and that is less painful for me physically but I still feel emotional pain at the idea that 90% of women are suffering each month – unnecessarily in my opinion. The treatment was fairly easy with only a few side effects. Taking selenium, 200 mcg per day is also important which is not mentioned in the PubMed link. Iodine deficiency and hypothyroidism are related conditions which also are associated with an increased risk for autism (post) so 90% of women suffering from a condition that appears to be resolved by simply increasing a dose of iodine seems like a simple solution worth pursuing.

“The incidence of fibrocystic breast disease in American women
was 3 percent in the 1920s. Today, 90 percent of women have this
disorder…” Read more:

or also in a post on this site: Why did the USDA remove Iodine from its Food Composition Database?

Toxins in the air, water and food supply have increased and nutrient content of many foods that are easily available have decreased. Denying that is denying a chance to improve before more species are also negatively affected. Blaming individual humans for making poor individual choices doesn’t explain why so many species are suffering loss of fertility and large drops in population.

The planet and its nations can’t afford an increasingly ill population. We are not just overweight (or chronically ill) because we eat too much and exercise too little, some do, but why is the better question. A healthy person has a healthy appetite that guides to balanced amount of food without counting calories and a healthy person has a healthy interest in active play or work that exercises the body.

Blaming doesn’t solve problems it just denies responsibility and prevents more helpful answers from being discovered.  A book I just picked up recently written by a pediatric endocrinologist is upsetting for me to read because blaming the patient for not following the doctor’s advice is a theme rather than considering the possibility that the advice itself might be wrong or incomplete. In my experience as a pediatric nutrition counselor I observed that children are the best at self-regulating their intake and generally did quite well at eating enough but not too much and generally had a reasonable height/weight ratio- except for the few who seemed to be overweight no matter how much their parent tried  to help them achieve a healthy weight for height.

Parents have lost custody or risked losing custody of their children when too large or too small and I’ve written about both issues. Undiagnosed congenital (from birth) hypothyroidism can be a cause of a child being tiny, too slim seeming except their bone structure is also slim so proportionally they tiny child can look healthy for their tiny weight. Force feeding wouldn’t help that child. Other children can be overweight even on limited calories, possibly due to an undiagnosed hypothyroid problem that occurred later than birth. Putting either the tiny child or the overweight child in foster homes would not solve an undiagnosed endocrinology problem. (post about the overweight child, Foster Care case) (post regarding tiny child and Foster Care case)

Holding parents accountable for something that is neglect or abuse is important but blaming them for underlying health problems that aren’t being diagnosed in many many people is wrong and there is no reason to expect that a Foster Care family would be able to make the child gain or lose weight if the underlying reason is an actual health problem.

To continue, after having finished the book, there is some value in it but there are also errors and opinion presented as fact. A dangerous idea is presented, likely meant as a joke but there is no qualifier given that it was a joke and not meant as advice and that the idea shouldn’t be followed. (p125 includes a maybe slip a mood altering substance in someone’s drink idea – no don’t do that ever, even if it is a legal substance and meant to boost the mood, it is illegal.

References ideally should be included for all information presented as facts in a book with educational goals. The section on nutrition is simplified to the point of dangerous misinformation and sugar is stressed as the primary problem with our processed food diet. It is a problem but not the only one.

Drinking any calorie containing beverage as a thirst quencher is a problem that I observed and counseled parents about for helping children who were heading upward on the weight to height ratio. Within three months usually, when the next appointment would be typically scheduled, the parents often had such success that they had forgotten that there had been a concern. Children are good at regulating food intake however the intake of liquids is not regulated in the same way as solid food. Our brains expect water for thirst because that is what nature provides. Once a baby is weaned from mother’s milk there is not typically any other calorie beverage in the natural world. As cavemen and women we did not milk wild animals or squeeze juice from fruits. We ate the fruits and wild animals as whole foods which are recognized by the brain as filling due to fiber or fats. Carbohydrates alone do not have the appetite satisfying effect on the brain that fiber and fats provide.

Regarding pediatric or adult endocrinology and the increase in metabolic syndrome and Type 2 Diabetes – sugar can increase insulin resistance but so can an absence of magnesium. Sugary processed foods often are not only deficient in fiber but they are also deficient in magnesium and B vitamins which are needed to process the sugar into usable energy.

More about magnesium deficiency and insulin resistance is available here: Association of Serum Magnesium Deficiency with Insulin Resistance in Type 2 Diabetes Mellitus,  (G3.122)

And I discuss it in more detail on a different website:

Magnesium deficiency may also be an underlying problem with migraine headaches and other chronic pain and muscle spasm type conditions. Calcium causes muscle contraction and magnesium allows the muscles to relax again.

To repeat an important point: When health statistics change as rapidly as they have in the U.S. and an increasing number of other nations then it is not a question of individual choice but of environmental changes.

Toxins in the air, water and food supply have increased and nutrient content of many foods that are easily available have decreased. Denying that is denying a chance to improve before more species are also negatively affected. Blaming individual humans for making poor individual choices doesn’t explain why so many species are also suffering loss of fertility and large drops in population.

Evidence based medicine is helpful as guidance but it is just a starting point for individualizing care further for each patient’s needs and if it is based on inaccurate or incomplete research then it may provide inaccurate guidance, but it is a starting point at least.

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

The voices that people with schizophrenia are hearing are probably their own inner thoughts

This is kind of breaking news — new news: A research scientist, with the aid of a powerful microphone, was able to record a patient with schizophrenia speaking to themselves in a sub-vocal voice. The patient was not aware that they were speaking at the time.

The research is very early, a first in its field perhaps, but the theory seems to suggest that the patient’s with schizophrenia symptoms may have some disconnect with the normal ability to identify internal thoughts and sub-vocal speech as being self generated and instead are interpreting the internal thoughts as coming from some external source of whatever type the person might think.

(Example of my interpretation of sub-vocal speech: the almost silent muttering under your breath that you don’t notice yourself doing, until suddenly you do notice that you’re talking to yourself, and then you stop because you don’t want anyone to notice. The brain of a someone with schizophrenia may no longer recognize the voices of self-talk, or those of voices in memories or in imagined conversations, as being internally self-generated and instead probably tend to make up some explanation for  whatever or whoever might be doing the talking that is being heard — hearing voices. Our internal chatter can get busy and sometimes pretty mean, it would be scary to not realize that it is just yourself. )

Read more, of the actual article:  []

This seems like very important news — patients with schizophrenia may be able to be gently reminded that those voices are just brain mumbles, and to try to ignore them.

People with schizophrenia are generally not associated with violence unless there is also a history of violent behavior, alcohol or drug abuse, or more persecutory fantasies. [citation missing, I don’t remember where I read that recently, but I posted it in a comment somewhere.]

Mental health symptoms sometimes may be due to underlying issues that could be easily fixed, rather than considering the patient as being ‘mentally ill’ for the rest of their life and likely being placed on medications that tend to have severe side effects. Effective health care would seek for any underlying causes that can be returned to a state of normal function with the simplest solutions possible, “Let food be thy medicine,” the first part of the quote by Hippocrates may be the most important part.

There are several different nutrient deficiencies that can cause symptoms similar to schizophrenia or may be involved in an underlying cause for the condition, this information was from an older post of mine but it was not grouped together:

Summary update written for something else, (clearly this post could use editing): The balance of cannabinoids is a problem in Schizophrenia. (2-AG ~ noneuphoric CBD is decreased in ratio to anandamide ~ euphoric THC compared to normal health, (66)) Use of CBD as a treatment has showed promise for schizophrenia, particularly during early stages of the condition. (67) The genetic difference that might make someone more susceptible to developing schizophrenia may involve a deficiency in Cannabinoid Receptor type 2. (68) (*Additional Note for anyone interested – several nutrient deficiencies can also cause symptoms similar to schizophrenia – and would need to be treated with diet or supplements – and all or some of them might be involved and need to be treated with diet or supplement changes in order for the underlying symptom causing deficiencies to be resolved.

The nutrient deficiencies may include zinc or an excess of copper in ratio to zinc level; the methyl donor B vitamins folate and vitamin B12 – so if a genetic problem existed in methylation than standard supplements of folic acid and unmethylated B12 might make it worse instead of better as the non-bioactive forms would be competing with whatever bioactive dietary folate and methylated B12 were being consumed (wrong puzzle piece blocking a spot for the right puzzle piece); hypothyroidism and elevated bromide is associated with schizophrenia so iodine may be low and goitrogens in excess; Vitamin D and/or an underlying infection with Toxoplasma gondii may be present, and a genetic difference in the Vitamin D Receptor or vitamin D metabolism may increase risk for infection with T gondii (catbox litter of a young cat is a risk factor for T gondii infection).

Soapbox moment for patient advocacy – the prognosis/quality of life for patients with schizophrenia was better a hundred years ago then it is now. Prescription medications are never going to be able to resolve one or several nutrient deficiencies or metabolic differences.

Regarding trends seen around the world in rate of schizophrenia, it has been dropping in South Korea and increasing in Japan. North Korea has the highest rate for the region:

Malnutrition in North Korea is more likely involved in the increased rate for the nation than cat ownership due to the many years of sanctions against the country. B12, folate, zinc and vitamin D deficiencies and excess copper may be involved in risk of developing schizophrenia like symptoms. Folate and calcium are considered to be potentially deficient for the typical Korean diet. Fortified milk products aren’t typically consumed so extra vitamin D from that source wouldn’t be available. Iodine is also a nutrient that may be deficient in the diet.

And low iodine levels can increase risk for hypothyroidism which has been found to be more common as a comorbid condition with patients with schizophrenia.

Bromine excess can compete with iodine and may increase risk of hypothyroid or schizophrenia symptoms.

Low thyroid levels have been associated with schizophrenia in early treatment of the disease and has been used in more recent care of patients by an alternative physician. The following link includes excerpts from many older research articles and one mentions kryptopyrroles being elevated in some patients so a genetic cause may be involved for some patients that would cause low zinc and low B6 levels (pyroluria).

Schizophrenia treatment and other psychiatric care in Russia does not seem to be an ideal to follow anywhere else – or there: However Russians on average do own a lot of cats, especially in comparison to residents of South Korea: 

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./