Quantum biology, microtubules – antennae for energy?

Theoretically our bodies have quantum energy fields that permit rapid movement of subatomic particles and possibly other very small atoms or molecules – at a lower total energy cost, so to speak. Fewer calories of glucose or other biological energy sources would be needed than might be expected for transport within or between cells. Study of this intersecting area of physics and microbiology is still in early stages.

One theory about quantum energy fields within biological systems involves cellular structures such as microtubules and nerve axons. They are straight cylinders formed of protein or a combination of proteins and fats which add stability to cell structure and provide tunnel like access from one area of a cell to another. Axons are the branching parts of brain and nerve cells that form connections between pairs or groups of cells. These straight cylinder like structures may also be acting somewhat like antennae (think cellphone towers receiving and transmitting energy in the form of Radiofrequency waves), to orient or stabilize quantum energy fields within the cells or in clusters of cells. Quantum energy fields are described in fairly simple terms by a NOVA story on pbs_org: The Good Vibrations of Quantum Field Theories, (pbs.org).

The quantum physics of the microtubule theory is complicated, see:

  • Quantum Antenna Hypothesis, by M. Pitkanen, April 26, 2018 (tgdtheory.fi/public_html/pdfpool/tubuc.pdf)
  • Quantum mechanical aspects of cell microtubules: science fiction or realistic possibility? by Nick E Mavromatos, CERN – Theory Division, Journal of Physics: Conference Series 306, 2011, (iopscience.iop.org/pdf)
  • Or for an overview description of the discovery of electrical vibrations in microtubules see this article about a research paper: Discovery of quantum vibrations in ‘microtubules’ inside brain neurons supports controversial theory of consciousness, 2014, (ScienceDaily).
  • Or a video lecture on the topic is available: Quantum Consciousness _ And its Nature In Microtubules. Dr. Stuart Hameroff, (youtube). *microtubules and Tau protein seem to be involved in Alzheimer’s disease – more on this planned for another post. See~8-9 minutes into the video, but more recent research has reached different conclusions. Initial info for those who like the links:
    1) Tau does not stabilize microtubules, challenges approach to treating Alzheimer’s /it stabilizes the dynamic/growing area of the microtubules, MAP6 stabilizes the microtubule more after Tau is lost & -> neurofibrillary tangles. https://medicalxpress.com/news/2018-06-tau-stabilize-microtubules-approach-alzheimer.html 2) The dynamic region of the microtubule is important for plasticity of nerve cell – ability for form new or dissolve unneeded connections between brain cells – so learning ability is affected by loss of Tau.- Microtubules in neurons as information carriers . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979999/
  • 3) Glycine is an amino acid that helps stabilize amyloid protein (https://neurosciencenews.com/diabetes-alzheimers-amyloids-9453/). 4) Glyphosate may be substituting in place of glycine, forming a misfolded protein that doesn’t stabilize the amyloid protein in the same way. (http://www.greenmedinfo.com/blog/how-glyphosate-poisoning-explains-peculiarities-autism-gut).

A simpler article discusses the possibility of quantum physics playing a role within the brain describing research that does not include the microtubule theory. See: A New Spin on the Quantum Brain, by Jennifer Ouellette, 2016, (quantamagazine.org)

Video of microtubules within the body:

Some types of straight cylinder proteins can be seen in a live action video, Strolling through the skin, which shows living tissue in normal motion. The fibrous collagen network that supports our skin and other ligaments, blood vessels and organs can be seen, (youtube). Microtubules within axons or in more close up views showing kinesin protein movement along the outside of a microtubule can be seen in a few videos within this group of links: (Kinesin protein). A variety of other links about quantum effects in biology are available in this group of links: (quantum tunneling).

Use of ionic plasma energy fields for wound healing:

The electrical/energy nature of our bodies has been found to be involved in wound healing. Ionic plasma fields (electrical fields, not blood plasma) are being experimentally tested to help wound healing in diabetics. Activation of Nrf2 pathways and rebalancing levels of oxidative stress chemicals seems to be involved in the mechanism of the electrically active ionic plasma treatment. The treatment also helps stabilize the cellular matrix of the healing wound. The cellular matrix is the intracellular fluid and includes the glycocalyx layer that coats the inner and outer membranes of cells and organs. It is made up of a gelatinous mixture of fluid and fibrous protein cylinders, some of which could be seen in the Strolling through the skin video, (youtube).

  • For more about ionic plasma in wound healing see: Redox for Repair: Cold Physical Plasmas and Nrf2 Signaling Promoting Wound Healing, (mdpi.com/2076-3921/7/10/146/htm)

Brain waves, sleep and relaxation:

Better understanding of the energy patterns in our bodies may also help us improve our health in a more general way – with mood and sleep. Sleep and more relaxed states of wakefulness have slower, cooler energy wave patterns while more active thinking has faster hotter energy waves. (See: On the Temperature and Energy of the Brain Waves Is there Any Connection with Early Universe?, byMiroslaw Kozlowski and Janina Marciak-Kozlowska, NeuroQuantology 2012; 3: 443-452 (pdf) ) Learning and regularly practicing some sort of meditative activity can help train the brain patterns towards slower wave energy, even if the meditative activity is simply zoning out while washing dishes or going for a walk instead of doing dishes with a grumpy resentful attitude or listening to a stimulating podcast on the walk. (See: Brain Waves and Meditation, (ScienceDaily)) Physically cooling the forehead/top of the head has been found to help people with insomnia fall asleep more easily. Insomnia is associated with the brain remaining more stimulated into of drifting into the cooler more relaxed lower activity brain waves. (See a previous post: Sleep and Health/reference, Sleep, Neurobiology, Medicine and Societycoursera.org)

Life in the oceans and our cells have many similarities:

This area of study, quantum energy fields in living organisms, is important within all types of biology. Basic cellular processes have many similarities from microbes to plants and animals and humans. Marine algae were the life form used to study quantum fields in the second link mentioned earlier: Quantum mechanical aspects of cell microtubules: science fiction or realistic possibility? by Nick E Mavromatos, CERN – Theory Division, Journal of Physics: Conference Series 306, 2011, (iopscience.iop.org/pdf).

From a health perspective it is also important to increase our understanding of how non natural electrical fields or nanoparticles in air or water pollution might be negatively effecting health of living species. (Nanoparticles were discussed in two previous posts, Air or Water Filters for Nanoparticles, and in the second part of Inventions Occur in Stages.)

What makes marine algae healthy or less healthy may help us understand our own health better or help us to better protect the health of the ocean and other forms of life on Earth.

Macro-tubules – logs.


Disclaimer: This information is provided for educational purposes within the guidelines of fair use. It is not intended to provide individual health care guidance. Please see a health care professional for individualized health care needs.

GPI anchors are cell membrane glycoproteins

Glycosylphosphatidylinositol (GPI)-anchored proteins are long and firmly embed within the membrane and leave an extension out over the surface of the membrane. One end of the protein stays embedded firmly within the cell membrane and the other end can attach to a variety of important molecules such as enzymes and antigens. The enzyme or antigen is held above the cell membrane in a position that makes it available to be activated on the cell surface.

The phosphatidylinositol end is lipid (oil or fat) based and dissolves well in the fatty acid rich environment found within the membrane. The glyco- or sugar part of the molecule is able to dissolve in water or form bonds with other proteins or carbohydrates and is found on the end of the molecule that sticks out over the surface of the membrane.

GPI anchor proteins are essential for life. Mice that were experimentally made to lack the gene thought to encode for GPI anchor proteins did not survive. Experimental “knockout” mice are usually observed to see what types of function the knocked out gene might have performed. The experiment showed that GPI anchors were necessary for basic survival of baby mice. (Ref. 1, Brooks, Dwek, Schumacher, 2002, p 225) When a protein is found to be so essential that a “knockout” mouse doesn’t survive than more minor differences are attempted to be made in order to try to find out what types of functions are changed or are missing from the more slightly modified “knockout” mice.

Background information: GPI anchors are found in some types of G-protein couple receptors and may have importance within the cannabinoid receptor system which has been found to play early and essential roles in implantation of the newly fertilized egg within the mother’s uterus.

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./

  1. Brooks SA, Dwek MV, Schumacher U., Functional and Molecular Glycobiology, (Bios, 2002, Oxford, UK)
  2. Landry Y, Niederhoffer N, Sick E, Gies JP., Heptahelical and other G-protein-coupled receptors (GPCRs) signaling., Curr Med Chem. 2006;13(1):51-63. [ncbi.nlm.nih.gov/pubmed/16457639]
  3. Maccarrone M, Bernardi G, […], and Centonze D., Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance., Br J Pharmacol. 2011 August; 163(7): 1379-1390 [ncbi.nlm.nih.gov/pmc/articles/PMC3165948/]

Additional note on GPI anchors:

  1. Fujita M, Kinoshita T. “GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics.” Biochim Biophys Acta. 2012 Aug;1821(8):1050-8. doi: 10.1016/j.bbalip.2012.01.004. Epub 2012 Jan 11.  Abstract: [http://www.ncbi.nlm.nih.gov/pubmed/22265715] “and discuss how GPI-anchors regulate protein sorting, trafficking, and dynamics.”

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./

To termites, trees are like giant sugar cubes

Sugar cubes contain the disaccharide known as sucrose which is made up of one molecule of the monosaccharide most common in fruit called fructose in addition to one molecule of the monosaccharide called glucose which is essential for energy production within the body and brain.

The cellulose portion of trees is made of long fairly straight chains of glucose with no fructose, so trees and sugar cubes aren’t really alike. The bonds between table sugar and tree fiber are at slightly different angles which means a hungry person or animal would require different enzymes in order to be able to break them down during digestion into smaller molecules and atoms for further use as an energy source.

The straighter angle between the simple sugars of plant fiber allow the linked chains of glucose to line up with each other.  When lined up the fibers then can form layers, which might seem a little like sheets of paper stacked on top of each other in a book, except it would be a round cylinder doughnut shaped book. Cellulose is one type of plant fiber, it and other types of plant fiber are found in the cell walls throughout the plant in the leaves, stems and roots.

Chitin is similar strong chain of the simple sugar N-acetylglucosamine. The simple sugars in chitin and cellulose both have the slightly straighter beta angle than the bonds found in energy storage starches or polysaccharides. Termites [3] and the bacteria found in the stomach of grazing animals are able to digest the stronger beta bonds of cellulose.

Humans and most other animals can’t digest the strong beta bonds of cellulose because a specific enzyme is needed. The termites and bacteria in the stomach of grazing animals can make the enzyme from other chemicals but humans and the grazing animals themselves can’t make it.

Energy rich plant starches have alpha type bonds between the simple sugars. Alpha bonds connect at an angle that might twist into a spiral chain similar to the double helix spiral of DNA.

The angled alpha bonds are also found in branching shapes of storage starches like glycogen or amylose. The sugar molecule at the end of each ‘branch’ is available for rapid digestion. Glycogen is the energy storage polysaccharide of glucose in animals and humans and amylose is the form of glucose storage used in plants. Glycogen is slightly more branched than amylose.

Tree bark and tree sap both contain glucose but the bark contains cellulose and the sap would have amylose or a similar alpha bonded energy storage starch. A shiny insect shell or seashells also are a type of sugar but not glucose. Shells contain N-acetyl-glucosamine in the form of chitin.

Supplements of glucosamine may be helpful for reducing joint pain. Clinical research studies with patients have found 1500 mg/day may be beneficial. [2]

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

References:

  1. S.A. Brooks, M. V. Dwek, U. Schumacher, Functional and Molecular Glycobiology, (BIOS Scientific Publishers, Ltd., 2002), Amazon.
  2. “Questions and Answers: NIH Glucosamine/Chondroitin Arthritis Intervention Trial Primary Study,” National Institutes of Health, National Center for Complementary and Alternative Medicine [nccam.nih.gov]
  3. Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI.,”Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki.” Insect Biochem Mol Biol. 2002 Jul;32(7):777-84. [ncbi.nlm.nih.gov]

Neuraminic acid was known first as sialic acid

Neuraminic acid, or sialic acid as it was first called, is a monosaccharide with nine carbons. It has a negative electric charge which gives compounds containing it a negative charge. This is useful for keeping molecules like red blood cells from getting too near to each other. The negative charge on the surface glycoproteins repels the red blood cells from each other or from the walls of blood vessels which also have compounds containing sialic acid.

Mature red blood cells have an active life for about seven days.  White blood cells remove older red blood cells and de-sialylation of the surface proteins is one way the older cells are identified. Cancer cells with the ability to produce excess surface sialyation may have an increased chance to metastasize and turn up somewhere else in the body. [13]

Our bodies need to be healthy and well enough nourished overall to keep the whole system working. The neuraminic acid is produced within our cells from other chemicals in a series of membranous channels called the endoplasmic reticulum and the golgi apparatus. The channels have embedded enzymes along the way somewhat like an assembly line in a factory. We can not just eat more sialic acid in our diet and have it show up on our cell surfaces – we have to be healthy enough and well enough nourished over all in order to be able to manufacture our own supply of sialic acid. All of the different enzymes within the assembly line like system of the endoplasmic reticulum and Golgi apparatus would have to be present and working which would mean trace minerals such as zinc might be essential for producing neuraminic acid/sialic acid.

Therapeutic glycoproteins are being developed and the problem of just the right amount of sialylation is one of the hurdles being studied. [2] In addition to the negative charge sialic acid tends to stabilize and stiffen the protein portion of the glyco-compound.  The proteins that line vessels were described to be somewhat like bottle-brushes; the protein being somewhat like the sturdy wire handle of the brush and with the negatively charged sialic acid acting as bristles that electrically repel other molecules of sialic acid. [1]

/This article was originally posted on 8/21/2013./ /Disclaimer: Information presented on this site is not intended as a substitute for medical care and should not be considered as a substitute for medical advice, diagnosis or treatment by your physician./

More recent research from the scientists at the University of Zurich, regarding sialic acid, found an association between the presence of autoimmune disease and reduced levels of sialic acid on the individual’s antibodies, which are important for the body’s immune cells to be able to recognize and remove infected or foreign or decaying cells: “Specific Sugar in Antibodies Structure Determines the Risk of Autoimmune Diseases,” Oct. 7, 2015, [molecularbiologynews.org]

References:

  1. S.A. Brooks, M. V. Dwek, U. Schumacher, Functional and Molecular Glycobiology, (BIOS Scientific Publishers, Ltd., 2002), Amazon.
  2. Bork K, Horstkorte R, Weidemann W., “Increasing the sialylation of therapeutic glycoproteins: the potential of the sialic acid biosynthetic pathway.” J Pharm Sci. 2009 Oct;98(10):3499-508. doi: 10.1002/jps.21684.  [ncbi.nlm.nih.gov]
  3. R. T. Almaraz, et. al., “Metabolic Flux Increases Glycoprotein Sialylation: Implications for Cell Adhesion and Cancer Metastasis.” Mol Cell Proteomics. 2012 July; 11(7): M112.017558. Published online 2012 March 28. doi:  10.1074/mcp.M112.017558 [ncbi.nlm.nih.gov]