Tag Archives: calcium

Increase in electromagnetic radiation may be associated with increased autism

A graph showing a similar rate of increase in electromagnetic radiation exposure and increased rates of autism can be seen around 42 minutes in the following video, Dr. Erica Mallery-Blythe – Electromagnetic Radiation, Health and Children 2014:

This type of radiation can be from wireless cell phones or laptops or from living very close, within a few miles, of high powered electric lines or power stations.

And even wirelessly connected toys might be harmful to children. [1, 2, 3] A computer or telephone that is not wireless, but is on an old-fashioned landline would not have the same level of electromagnetic radiation.

Tinfoil hats would only act as an antennae and possibly increase radiation absorption, however grounded metal foil might absorb the radiation rather than deflecting it and causing it simply to bounce around more. Water also absorbs this type of radiation which may be part of the reason electromagnetic radiation is dangerous to humans and other life forms – we are water based. [4]

A nonprofit organization of physicians who would like to increase awareness of electromagnetic hypersensitity has more information available on their website and an opportunity to join their group: http://phiremedical.org/tag/pdfs-for-electromagnetic-hypersensitivity/

I’ve filed this under calcium on this site because EMF radiation can cause an increased flow of calcium into the interior of cells which can lead to overexcitement of the cell and may lead to cell death. People with hypersensitivity to electromagnetic radiation have measurable differences in their skin in response to exposure to EMF radiation compared to non hypersensitive people. An increase in mast cells may be part of the difference between the two groups.

See this video for more information, and/or a research article by the speaker regarding electrohypersensitivity, https://www.ncbi.nlm.nih.gov/pubmed/17178584:

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

Chronic itch, ion channels, magnesium and calcium

Genetic differences in more than 70 genes have been associated with increased itchiness. [1] Calcium and serotonin levels may be involved in increased itch or arthritis pain signals being sent/perceived. [2] See the excerpts below:

Summary: Too much or too little calcium and magnesium can affect pain, itching, and mood. The minerals are both electrically active, and provide energy for ion channels which control the transport of messenger chemicals like serotonin across cell membranes – such as nerve cell membranes.

“For neurons to become excited, you need a receptor to communicate with an ion channel,” said Dr. Bautista. “We tried a variety of experiments and found that HTR7 communicates with the TRPA1 ion channel. Both receptors seem to be working together to mediate chronic itch.” “The researchers found more than 70 genes whose expression was higher in the more itch-sensitive mice. Of these, the gene for the HTR7 receptor was the most closely linked to itch. In fact, the HTR7 gene was twice as active in the itchiest mice compared to the least sensitive mice. ”  [1]

  1. An Itch You Just Can’t Scratch; NIH-funded study identifies proteins that may cause chronic itch (Oct. 27, 2015) http://www.ninds.nih.gov/news_and_events/news_articles/pressrelease_chronic_itch_10272015.htm
  2. Adam Horvath, et al., Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice, Arthritis Res Ther. 2016; 18: 6http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718022/          

    Excerpt: “TRPA1 is also directly stimulated by intracellular calcium [24] and a broad range of noxious endogenous oxidative products, such as 4-hydroxy-2-nonenal, hydrogen peroxide, hypochloride, hydrogen sulphide, 15-delta prostaglandin J2 [2528]. Furthermore, there are several exogenous irritants like mustard oil (allyl isothiocyanate: AITC) [29], cinnamaldehyde [30, 31], allicin [32, 33] and formalin [34] that are known to be potent agonists of TRPA1. Inflammatory mediators, such as bradykinin and serotonin, can sensitize this receptor and increase the responsiveness of the nerve endings [19, 35]. These findings suggest that TRPA1 may be involved in the development and maintenance of arthritic pain, but the precise mechanisms are still unknown.”

  3. Rs6295: The “Single” and “Self-Transcendent” Gene (5-HT1A Receptor) https://selfhacked.com/2015/07/23/rs6295-the-single-and-self-transcendent-gene-5-ht1a-receptor/Magnesium and Calcium increase the binding of serotonin to the 5HT1A receptors in the cortex (purkinje cells). (R)

  4. Bujalska M., et. al., Magnesium ions and opioid agonist activity in streptozotocin-induced hyperalgesia. Pharmacology. 2008;82(3):180-6.http://www.ncbi.nlm.nih.gov/pubmed/18701828

  5. That Really Does Make It Worse

    Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

Good news: Baths can be less exhausting than showers

Yes, autoimmune disease can be exhausting and it can be confusing for other people to understand because autoimmune disease may not have obvious symptoms. A person with an autoimmune disorder may suffer from severe pain or other symptoms throughout their body but not have lab tests that show obvious problems to a physician. Autoimmune antibodies are known for a few types of disorders and those can be screened for if the lab test is ordered but not all autoimmune antigens have been identified.

Magnesium deficiency may be an underlying issue though for many/most autoimmune disorders, so taking an Epsom salt bath can provide improved magnesium absorption through the skin and allow a person to sit down to wash their hair and shave their legs (if desired). No promises though, that a nap might not still be desired after the exertion of bathing while sitting, or before the exertion of blow-drying long hair.

Fibromyalgia and chronic pain problems may have autoimmune origins [3] and/or may have to do with our cell’s energy workhouses, the mitochondria, running out of their preferred energy source — magnesium. They use calcium but it can overwork them to the point of cell death. In normal physiology membrane transport systems, also called ion channels, carefully control how much calcium is allowed into the interior of mitochondria. Something called ruthenium-red (RuRed) and magnesium ions are involved in controlling the entry of calcium ions through the transport channels. [1, 2]

A deficiency of magnesium may allow excess calcium to enter the mitochondria and cause overexcitation and even lead to death of the mitochondria.

Mitochondria are actually similar to bacteria and have their own DNA that in nature always matches the mother’s mitochondria’s DNA but that is a different story.

(RuRed) – not a nutrient I didn’t know about – it’s a dye used in labs that selectively binds with some things but not others so it is used for identification purposes with unknown samples — roughly.

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

  1. http://ajpcell.physiology.org/content/287/4/C817
  2. https://www.researchgate.net/publication/20680823_Ruthenium_red_and_magnesium_ion_partially_inhibit_silver_ion-induced_release_of_calcium_from_sarcoplasmic_reticulum_of_frog_skeletal_muscles
  3. https://www.ncbi.nlm.nih.gov/pubmed/24435355

Mitochondria, P53, cancer and magnesium deficiency

Addition, 7/21/16, there is more information about mitochondria and chronic illness at this link: https://www.sott.net/article/321987-Thanks-Big-Pharma-for-the-Mitochondrial-collateral-damage, the site also has a few other articles on the topic which I haven’t read yet and the topic of magnesium doesn’t come up until you reach the comment that I added. I will have to read more about this topic. Medications that cause an imbalance in calcium and magnesium could be causing stress to the mitochondria and lead to their death and to chronic illness.

  • This article is short introducing a long video. A quote from the short text does mention nutrient deficiencies can be involved, “Nutrient deficiencies are a contributing factor to mitochondrial dysfunction. ” https://www.sott.net/article/308212-Mitochondrial-dysfunction-GMOs-Glyphosate Glyphosate  Inhibition of vitamin D metabolism could lead to magnesium and  calcium imbalance which could be stressing mitochhondria and lead to chronic illness.
  • An abstract with a link to the full text: https://www.sott.net/article/264786-Oxidative-stress-mitochondrial-damage-and-neurodegenerative-diseases
  • https://www.sott.net/article/294075-Fibromyalgia-as-a-mitochondrial-disorder
  • I haven’t watched the video or read all of the articles yet but fibromyalgia is what I had symptoms of that were bad enough to lead to my giving up wheat and gluten products initially. It simply hurt too much when I ate them. And I got better without gluten. Maybe it was the gluten or maybe my genetics with errors in the vitamin D metabolism. I will have to get back to this topic but I share the information now because pain hurts and if even one person is helped then I would be glad. *And I was a professional gourmet baker, I know how to make from scratch croissant, and French baguettes and loaf breads of many types as well as cookies and quick breads. I love wheat products but they didn’t love my body.

A comment of mine that is awaiting moderation posted on another site:

Mitochondria need lots of magnesium (and magnesium is also necessary for white blood cells to be able to perform apoptosis.) “Additionally, exposure to low Mg upregulated plasminogen activator inhibitor-1 (PAI-1) [24]. PAI-1 is considered not merely a marker of senescence, since it is both necessary and sufficient for the induction of replicative senescence downstream of p53 [27].” by D. Killilea and J. Maier, “A connection between magnesium deficiency and aging: new insights from cellular studies” Magnes Res. 2008 Jun; 21(2): 77–82. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790427/ Please U. of Penn. researchers, look into preventing cancer by providing mitochondria with a healthy diet instead of by providing them with some sort of pharmaceutical designed to manipulate P53 — just prevent P53 from being induced by providing adequate magnesium to the cells. Thanks.

The comment is in response to this article which is about recent animal based research that suggests that a cell’s mitochondria when under stress may produce a chemical (P53) that may lead to cancer: http://scienmag.com/penn-team-finds-mitochondrial-stress-induces-cancer-related-metabolic-shifts/#comment-7188

Now I know mitochondria need a lot of magnesium so one search led to the link in the comment and ~391,000 other links, https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=mitochondrial+stress+P53+calcium+magnesium, including this one:

by Giorgi C., et. al., “p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner” PNAS, Feb. 10, 2015, vol. 112, no. 6, pp 1779–1784. http://www.pnas.org/content/112/6/1779.full.pdf

Apoptosis is the method by which white blood cells are able to kill infected or malfunctioning or old cells. Calcium and magnesium are both electrically active and can both act as signals to promote different types of cellular actions. Magnesium is most active within cellular fluid and calcium entry into cells is limited in part by ion channels that are powered by magnesium. So a magnesium deficient cell can allow too much calcium to enter the cell and within the cell calcium can cause a variety of actions and can even over activate the cell to the point of cell death. (155,000 search results for “excess calcium overworks mitochondria” :   https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=excess%20calcium%20overworks%20mitochondria  and which includes a link about the nerve degeneration disease ALS: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933290/  so it looks like if I want to protect myself from cancer or ALS I should not stress out my mitochondria by maintaining a good intake and internal balance of both magnesium and calcium.)

Another addition to look into more at some point – P53 and apoptosis has been found to be affeected by treatment with a homeopathic preparation (which would be a completely non-toxic energy based treatment. http://www.jcimjournal.com/articles/publishArticles/pdf/S2095-4964(16)60230-3.pdf

/Disclaimer: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./

Pre-eclampsia, Magnesium Deficiency, or Grass Staggers?

Pre-eclampsia is a frequent and life threatening problem for pregnant and postpartum women that can occur prenatally or up to 48 hours after delivery. The primary cause of the syndrome has been unrecognized in the medical field. However, the treatment and prevention of magnesium deficiency has been well understood in the dairy industry and the symptoms of the two conditions are very similar.

We study animals in medical research because it is unethical to experiment on humans. Farmers and vets care for dairy animals because it is ethical and profitable to help maintain their health. What they learn can help us understand other mammals too – such as humans.

Hypomagnesemia, also known as grass staggers, can occur in the pregnant or postpartum cow, but it can also occur in herds feeding on low magnesium fields. Weakness and falls occur in the cattle and they recover when feed is provided that contains adequate magnesium. The best treatment is prevention by providing extra magnesium if the feed has low levels. [1]

Magnesium deficiency can cause leg cramps, constipation, weakness, falling, cardiac arrythmias, edema and hypertension, anemia and poor immune health, ringing in the ears, irritability and headaches, and when severe seizures are possible. [2] I have had some of these symptoms – including the “wobbles” – feeling weak in the legs and almost stumbling. These symptoms are quite similar to those described for pre-eclampsia and at its most severe seizures are also a risk.

Current care for a human with pre-eclampsia might involve calcium channel blocker pharmaceuticals prenatally for controlling hypertension and intravenous doses of magnesium sulfate in the ER or delivery room for preventing or treating eclamptic seizures. Calcium causes muscle fibers to contract and magnesium allows them to relax.

Calcium channel blockers are patent-able pharmaceuticals trying to perform the job nature assigned to magnesium. The movement of potassium and sodium through ion channels in nerve cell membranes is well understood. A similar interaction is known about calcium and magnesium in the contraction of muscle fibers. Magnesium is the main gate keeper inside of the cell; it can prevent entry of calcium. When low on magnesium the muscles may be flooded with calcium and the constant contraction of the muscle fibers can turn into early labor cramps and possibly seizures.

Puffy ankles (edema) means intracellular fluid is leaking out and more calcium channel blockers are necessary, but more magnesium please. The prenatal woman is low in magnesium because she has been using extra to grow a baby – she can’t grow a baby out of pharmaceuticals.

Eight percent of pregnancies may be affected by pre-eclampsia/eclampsia and the current medical recommendation suggests that calcium and aspirin might help. [4] A different source states that the condition is a problem for up to 10% of women in developing nations and affects between 3-5% of pregnancies for women in the USA. [9]  Pregnant people are already told to consume extra calcium in their diets. If that strategy were working then why do eight percent of pregnancies still have pre-eclampsia problems?

Magnesium supplements have been reported to be helpful for preventing leg cramps during pregnancy in one study but results from another study didn’t replicate the results. [5]  A large study has begun based in Brazil that plans to provide the trial group of prenatal participants with two 150 mg magnesium supplements per day throughout the pregnancy in the hopes of preventing pre-eclampsia and reducing the number of infants born prematurely or at a low birth weight. [10] Another study focused on assessing the difference in long term mineral status of patients who had pre-eclampsia prenatally compared to those who didn’t. The results found that long term calcium status was the same which does not support the current theory that calcium deficiency is involved in the condition. [11]

A different study focused on the difference in current trace mineral status between patients with pre-eclampsia and those without. Blood levels of copper, zinc, selenium, calcium and magnesium were measured. Copper was the only mineral found to have similar levels between the two groups. The blood level of the other four minerals was significantly lower in women who had pre-eclampsia then in the group without the condition during their pregnancy. [12]

When the body is too low in magnesium then the body will increase hormone levels that cause a drop in calcium levels. Too much calcium and too little magnesium in the blood can cause heart symptoms so there are several ways the body can prevent an imbalance between blood levels of calcium and magnesium. A study that looked at whether magnesium sensitive genes were involved in blood pressure control during pregnancy did find that one was more active in pregnancy compared the non-pregnant group.  The gene TRPM6 was more active in the pregnant group than in women in the control group. [13]

Other research regarding the condition has noted an increased risk among close family members (mothers, daughters, sisters – if one has pre-eclampsia, other close female relatives are statistically more likely to also experience it in their pregnancies.)

A study that measured the vitamin D, hormone D, parathyroid hormone, albumin, and calcium blood levels of postpartum women who had had pre-eclampsia and those wh0 hadn’t during their pregnancies and found no significant difference in any of the levels between the two groups. Both groups had low vitamin D levels but normal levels of hormone D, parathyroid hormone, albumin and calcium. [15]

A study at the University of Benin found a significant correlation between low magnesium and increased prevalence of pre-eclampsia. The study concludes with a clear recommendation that consuming magnesium rich foods during pregnancy may improve the outcome:

“Pre-eclampsia and pre-term birth are associated with hypomagnesemia in pregnancy; hence, magnesium supplementation or magnesium-rich diet consisting of green leafy vegetables, soy milk and legumes may improve outcome.  [14]

A review of research regarding magnesium and prenatal health also concluded with a recommendation for pregnant women to consume adequate magnesium rich foods:

This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. [16]

Magnesium sulfate is used during labor and delivery to help prevent seizures in women with pre-eclampsia/eclampsia. I was told that the large dose feels painfully like fire in the veins. Which makes sense because it is an electrically active ion typically found in large amounts only within cell fluid rather than also freely available within the blood plasma. Some clients were very motivated to eat better if it would help prevent blood pressure problems from reoccurring and reduce the possibility of IV magnesium from being necessary. Simple solutions like pumpkin seeds and the DASH diet may be safer too. The high dose of intravenous magnesium sulfate can lead to cardiac problems and patients who receive the treatment are carefully monitored which takes additional staff time and other medical resources. [6]

Ibuprofen or other non-steroidal anti-inflammatory drugs (NAISDs) may help protect the infant during pregnancy if an infection is also part of the problem underlying pre-eclampsia. The ibuprofen helps reduce an increase in cytokines. The cytokine flood is an inflammatory reaction that may be associated with an increased risk to the infant for mental health problems developing later in life. [7]

Pre-eclampsia can be prevented by eating more magnesium rich foods throughout pregnancy. Beans, nuts, seeds and dark green vegetables are rich in magnesium. Chocolate is a good source, and there is a little magnesium in most foods. Whole grains are also good sources except the phytate content reduces mineral absorption. Shelled pumpkin seed kernels are similar to sunflower seeds in texture but they are greenish in color. Both are good sources of magnesium and other nutrients. Pumpkin seeds are a good vegetarian source of zinc, an essential trace mineral.

Mom and baby need magnesium daily. Having a moderate calcium intake will actually help both nutrients to be more usable to the body, baby, and bones. Frequent use of carbonated drinks, coffee, black tea, and acidic juices can cause the kidneys to waste magnesium. A diet high in meats and dairy products is also acid producing during breakdown and bone stores of magnesium may be used during excretion of the waste products if magnesium isn’t available from the diet. Our kidneys actively save calcium while using magnesium to remove the excess acid or excess calcium. Use of calcium rich OTC drugs like Tums or Rolaids frequently may decrease magnesium.

The intestines may not be absorbing magnesium well. Calcium is rare in nature except in dairy products. Our bodies expect lots of magnesium and not much calcium from our day’s intake. Too much vitamin D, when active, can cause even more calcium absorption in the intestines.

Magnesium containing skin creams may reduce leg cramps and other prenatal discomforts. Epsom salt foot soaks or baths can be soothing and nourishing as well.

Herbal teas are very nourishing in general – a few would not be recommended with pregnancy but raspberry leaf tea has been used successfully for generations.

“Raspberry leaves as well as the fruit contain many valuable vitamins needed during pregnancy. As well as containing iron, they are rich in vitamins A, C, B, E, calcium, manganese and magnesium. Magnesium particularly contributes to the strengthening of the uterine muscles.” [18]

The DASH diet was designed for helping prevent or manage high blood pressure rather than for pregnancy but pre-eclampsia can involve high blood pressure and the diet includes more emphasis on magnesium rich foods than the standard diet plans. The DASH diet plan includes a group for beans/nuts/seeds which are all good sources of magnesium. [8]

A prenatal diet plan is primarily different from a standard woman’s diet plan by having one additional dairy serving for extra calcium and the equivalent of one additional mixed snack during the second and third trimesters. During the first trimester calorie needs are similar to standard. Make the additional mixed snack a magnesium rich snack and pre-eclampsia might not become a problem. Corn chips and bean dip, peanut butter toast, or pumpkin seed kernels in a trail mix would all be snacks containing magnesium and other nutrients.

Continuing a diet with more magnesium, zinc, selenium, and adequate calcium intake may also help protect women with a history of pre-eclampsia from experiencing heart disease symptoms later in life. An association has been observed in medical research between a history of having had pre-eclampsia and increased risk of heart disease. [17] The DASH diet was designed to help reduce cardiovascular risks associated with high blood pressure. Continuing to follow the diet plan may help protect against heart disease.

Differences in the TRPM6 gene may underlie both the risk for pre-eclampsia and for heart disease risk. In an animal based study providing adequate magnesium helped protect the animals with differences in the TRPM6 gene. [19] TRPM6 channels are more prevalent in epithelial cells (type of cell that forms the skin and the lining of the GI tract) while TRPM7 channels are common throughout the body. Both types transport magnesium. Evidence suggests the TRPM7 type are involved in hypertension. [20] TRPM7 channels may be more involved in risk of heart attack (myocardial ischemia). [21]

More information about TRP channels is included in this post about Irritable Bowel Syndrome: http://transcendingsquare.com/2016/03/30/and-what-do-osmomechanical-stress-changes-of-temperature-chili-powder-curry-powder-ginger-benicar-hormone-d-steroids-and-cannabinoids-have-in-common/

Which led me to wonder if there is any association between IBS and pre-eclampsia – one study found some co-occurrence that was not statistically significant. There was an increased risk (25-30%) found for miscarriage and having a diagnosis of IBS  and depression/anxiety prior to becoming pregnant (how severe the symptoms was not assessed). [22]

A hypothesis regarding intrauterine pressure and pre-eclampsia mentions that it is associated with cell stress and decreased magnesium levels were noted:

“Jarosz et al. reported that in lab animals exposed to IAH of 25 mmHg, histology of the brain demonstrated evidence of ischemic neuronal cell stress and decreased magnesium levels [73].” [23]

A brief background regarding TRP channels – they act as pressure release valves so that organs leak rather than overfill. As a visual picture think of blowing up a balloon, eventually you have to stop or it will pop. The TRP channels would allow the balloon to leak instead of popping. The channels are located throughout the body and are formed from a large protein or group of proteins that cross the cell membranes. Magnesium is an electrically active mineral that provides the energy required to keep the channels closed and only allow transport of desired chemicals through the channel.

Having too little magnesium available leaves the channels without energy to stay closed and prevent fluid or other chemicals from crossing through the channel. Depending on the difference in pressure fluid and chemicals might rush into the cell from the surrounding fluid (extracellular fluid) or fluid and chemicals might rush out of the cell (intracellular fluid) into the surrounding fluid.

The hypothesis about intrauterine pressure and pre-eclampsia includes background information on the condition but magnesium is only referenced (see the excerpt above), its role in TRP channels was not discussed.

Emergency guidance suggested having the woman experiencing severe symptoms physically get into a kneeling position or lay horizontally on their left side:

Within the limitations of this analysis, data suggest that IAP may be altered throughout pregnancy by modifying the maternal position (altering the force direction), with the lowest pressure values obtained in knee–chest and left lateral positions. The negative pressure values obtained in the knee–chest position are important, as inversion of the maternal abdomen may provide an easily available and effective emergency intervention for PE, should this hypothesis be confirmed.” [23]

The article doesn’t provide further description of the position. My guess is a position that was recommended at the time I was pregnant for helping prevent breech delivery – get on hands and knees and then lower the chest and head to the floor, and then relax and stay there a while, having a pillow and watching TV is okay. Yes, see here, scroll down the page: [24]

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

  1. Grass Staggers In Cattle & Sheep, http://www.dairy-direct.co.uk/?p=2868
  2. Magnesium Fact Sheet for Health Professionals, NIH,  https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/
  3. Effects of Antenatal exposure to Magnesium Sulfate on Neuroprotection and Mortality in Preterm Infants :Maged M. Costantine, MD, Steven J. Weiner, MS, Obstet Gynecol. 2009 August; 114(2 Pt 1): 354-364
  4. Magnesium deficiency-induced spasms of umbilical vessels: relation to preeclampsia, hypertension, growth retardation. Pub:Science, 221 (July 22, 1983): pp376(2)Burton M. Altura, Bella T. Altura and Anthony Carella
  5. http://www.webmd.com/vitamins-supplements/ingredientmono-998-magnesium.aspx?activeIngredientId=998&activeIngredientName=magnesium
  6. http://www.webmd.com/baby/tc/pregnancy-and-epilepsy-topic-overview
  7. http://www.saturdayeveningpost.com/2011/09/12/in-the-magazine/health-in-the-magazine/viral-link-mental-illness.html
  8. http://dashdiet.org/default.asp
  9. https://www.nichd.nih.gov/health/topics/preeclampsia/conditioninfo/Pages/risk.aspx
  10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096428/
  11. https://www.ncbi.nlm.nih.gov/pubmed/24102858
  12. https://www.ncbi.nlm.nih.gov/pubmed/23825993
  13. https://www.ncbi.nlm.nih.gov/pubmed/26104253
  14. Enaruna NO1, Ande A, Okpere EE., Clinical significance of low serum magnesium in pregnant women attending the University of Benin Teaching Hospital. Niger J Clin Pract. 2013 Oct-Dec;16(4):448-53. 
     https://www.ncbi.nlm.nih.gov/pubmed/23974737
  15. https://www.ncbi.nlm.nih.gov/pubmed/24853885
  16. Dalton LM, et al., Magnesium in Pregnancy, Nutr Rev. 2016 Sep;74(9):549-57.  https://www.ncbi.nlm.nih.gov/pubmed/27445320
  17. https://www.ncbi.nlm.nih.gov/pubmed/25721023
  18. Ferguson, Patricia. “Turning over a new leaf for pregnancy: London-based medical herbalist and ‘living food educator’ Patricia Ferguson discusses how raspberry leaves can help pregnancy.(Raspberry leaves).” Royal College of Midwives Journal. Ten Alps Publishing. 2009. HighBeam Research. 16 Feb. 2011 .
  19. https://www.ncbi.nlm.nih.gov/pubmed/27991852
  20. https://www.ncbi.nlm.nih.gov/pubmed/18192217
  21. https://www.ncbi.nlm.nih.gov/pubmed/24445530
  22. http://www.medscape.com/viewarticle/761575
  23. http://www.sciencedirect.com/science/article/pii/S0306987714002722
  24. https://www.glowm.com/section_view/heading/Umbilical%20Cord%20Prolapse%20and%20Other%20Cord%20Emergencies/item/136
  25. edited by Richard A. King, Jerome I. Rotter, Arno G. Motulsky  The Genetic Basis of Common Diseases, page 539 https://books.google.com/books?id=xKC4swxJC1UC&pg=PA539&lpg=PA539&dq=intrauterine+pressure+in+black+women%27s+pelvic+structure&source=bl&ots=M9TWK8OdYd&sig=YRYuD908NTDc-CChVhIDWKE1l6c&hl=en&sa=X&ved=0ahUKEwjA6qicgsbTAhVHxlQKHWyWBigQ6AEIQDAE#v=onepage&q=intrauterine%20pressure%20in%20black%20women’s%20pelvic%20structure&f=false
  26. G. Ghosh, Racial/ethnic differences in pregnancy-related hypertensive disease in nulliparous women,
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171100/

Electrolytes are essential, magnesium helps protect brain cells

     Our bodies are like an ocean, not a fresh water lake. Our blood and cell fluid has a balance of salts and proteins that are essential for keeping things flowing and interacting as needed. Salts in our body are called electrolytes and they work in a buddy system.
Sodium and potassium are buddies that chemically can donate one electron for chemical bonds or energy interactions and calcium and magnesium can donate two electrons each. These minerals power nerve signals, muscle contractions and the movement of chemicals across cell membranes. All four are equally essential to have in our diet everyday.

Salt (Sodium chloride) has been a valuable trade commodity in ancient cultures. Seafood and salt mines are good sources.

Potassium is found in all fruits and vegetables.

Calcium is found in hard water, in dairy products, almonds, sesame seeds, beans, greens, canned fish, fortified foods.

Magnesium is found in hard water, beans, nuts, seeds, greens, whole grains, chocolate and a little in most foods.

     We can die with too much or too little of any of the four essential electrolytes. Salt is not bad for us, we just need potassium in similar amounts. Processed foods tend to be overly salted and low in potassium. If we eat that way occasionally, no big deal, but if we eat that way most days then we may become low in potassium.

We lose electrolytes everyday in sweat and in the urine and feces. Muscle cramps can be a symptom of potassium deficiency and heart attacks can occur with abrupt drops in potassium. Muscle cramps may also be a symptom of magnesium or calcium imbalances.

Sweating a lot can leave us low in sodium and other electrolytes. Heatstroke can be due to excess heat [3] but it may also be due to hyponatremia or low sodium blood levels which can leave you feeling weak, dizzy and confused. Drinking plain water without also having a salty food may leave you feeling sick to your stomach if you are too dehydrated. Having a little salt or salty food first and then sipping the water might feel better when trying to rehydrate after a workout. The stomach controls what it lets into the more fragile intestine. If the stomach fluid is too thin and watery or too concentrated and acidic then the stomach will reject the fluid and cause vomiting. If the body has enough stored fluid and electrolytes then the stomach has systems for drawing in what it needs to digest whatever you eat. If you are dehydrated from excessive sweating then your stomach would not have those extra stores to use.

Magnesium may not be as familiar of a nutrient as calcium but it is just as essential to life. Excessive sweating during sports has been associated with sudden stroke later in the day in young athletes. It has been suggested that a sudden drop in magnesium from sweat losses may be the cause. Magnesium acts as the gate keeper in cell membranes and prevents calcium from flooding in from the blood. Calcium turns things on in the body and magnesium turns them off.

Calcium causes muscle fibers to contract and magnesium allows them to relax again. Calcium activates the energy production in the cell’s mitochondria and too much calcium flooding into a brain cell at once can overwork the cell to the point of cell death.

Glutamate and aspartate are amino acids that also act as brain neurotransmitters and their movement is carefully controlled by the protein channels in our cell membranes. Magnesium keeps the protein channels shut, so a sudden drop in magnesium may also cause stroke due to excessive flooding of brain cells by glutamate or aspartate. It might be better to avoid drinking beverages that contain Nutrasweet (Aspartame contains aspartate) by themselves in sweaty situations. A magnesium containing electrolyte beverage like Glaceau’s “Smart Water” would provide the brain cells with magnesium which is needed to prevent calcium, glutamate and aspartate from entering the cell.

 Sweaty situations call for rehydrating with water, and a potassium rich fruit or vegetable or juice and having a salty snack. Have beans, nuts, sunflower or pumpkin seeds with your salty snack and you have your magnesium losses replaced as well.

Re-hydrating is also important if you are losing fluid in diarrhea or vomit. It’s also worth remembering to hydrate after night sweats or during high fevers. Darker yellow urine is a sign that you are dehydrated. Dry, chapped lips and skin are also symptoms.

No extra money is needed for a fancy bottled beverage when you understand your body’s electrolytes and know which foods and drinks are good sources. Dehydration is a frequent reason that people go to the hospital emergency room but with planning it is a problem that can be prevented.

Thinking about good hydration may help to be more aware of thirst signals. It can be easy to misinterpret thirst as hunger, so sometimes you can save calories and cut back on mindless snacking by trying a drink of water first.

Excerpt: Scientists See Dangers in Energy Drinks, By Jane E. Brody (NY Times, Pub: January 31, 2011) [link]

“The authors noted that “four documented cases of caffeine-associated death have been reported, as well as five separate cases of seizures associated with consumption of energy/power drinks.” Additional reports include an otherwise healthy 28-year-old man who suffered a cardiac arrest after a day of motocross racing; a healthy 18-year-old man who died playing basketball after drinking two cans of Red Bull; and four cases of mania experienced by individuals known to have bipolar disorder.”

/Speculation/ The seizures, cardiac arrest, death after athletics, and mania could all be due to sudden changes in magnesium and potassium levels. The caffeine increases urine volume and urinary magnesium losses and the athletes also lost magnesium in sweat. The protein channels that have inadequate magnesium allow calcium to over-flood cell interiors. The calcium can trigger muscle spasms which may lead to cardiac arrest or stroke. Brain cells would also be vulnerable to over-excitation by calcium or the free amino acids, aspartame and glutamate. Brain cells that are constantly active could be associated with mania or seizures.

We could help prevent brain damage by adequately protecting our cell membranes with more frequent intake of magnesium containing foods and beverages. Seizures, strokes, migraines and mania are related to brain cells getting over stimulated and  the resulting lack of oxygen and energy stores can lead to cell death. The glutamate receptor rich areas of the brain are frequently the most devastated in the brains of sufferers of senile dementia.

 An Easy Solution: put magnesium back in beverages – it is in ground water and it is an essential electrolyte. The U.S. regulated it out in the past and bottlers have been removing it ever since – our intestines are suffering. [water policy history review – a 1920 Water Power Act had to do with hydroelectric water rights more than mineral content. I haven’t found more information about a bottled water act yet, [waterencyclopedia.com]
Every sip of a beverage that does not contain magnesium requires magnesium to be drawn to the intestines and stomach from our stored reserves – which are our bones – our structural support. If we want to stop osteoporosis then we need to be sipping and eating foods with a reasonable quantity of magnesium throughout the day. Any time we consume foods or fluids that have an electrolyte content that doesn’t match the concentration that is normal for our body requires our bodies take nutrients out of the reserves stored within our bones, those reserves run out eventually, leaving bones brittle from osteoporosis.

/Disclosure: This information is provided for educational purposes and is not intended to provide individual health care. Please see a health professional for individualized health care./