Cannabinoids & blood vessels – and LongCovid.

I have been experiencing blood vessel breakdown and edema – in my fingertips, since stopping THC (medical marijuana) to travel in non-legal states, I continued CBD though. My genetics make me equivalent to a knockout mouse – I can’t make endocannabinoids & need an external source. Medical marijuana products have the most, a few foods or spices have a little. (Symptoms of Clinical Endocannabinoid Deficiency & Phospholipid food sources (post))

Gist of my Thread * – hypoxia, low oxygen, plus low THC/anandamide -> increased blood vessel breakdown. My solution was to increase motion in my fingers – ‘jazz hands’ & hold the steering wheel very gently. My fingers hurt, still do. Haven’t gotten back on THC yet. *The pain got better when I got back to using medical marijuana. (*This post is based on a Twitter Thread I wrote Sept 1,, 2020, and added too Sep 18, 2020; more recent info reminded me of it and led to this post)

The Endocannabinoid system has a role in vascular health and regulation of inflammation.

Summary point – excess inflammation causes breakdown of the cell membranes to release stored endocannabinoids for use as messenger chemicals – able to directly cause actions or after having been transformed into another chemical such as eicosanoids. Endocannabinoids are also used within membranes and release of too many can cause membrane breakdown.

Anandamide (natural cannabinoid) boosts the body’s Nitric oxide, helping: muscular tone of blood vessels, healthy insulin secretion, healthy muscular tone of our airway pathways, a healthy digestive tract, & new blood vessel & healthy nerve development. ” – Dr. Caplan, @drcaplan. (16)

Anandamide is the THC equivalent endocannabinoid and has also been found protective of the blood vessel membranes involved in the blood brain barrier, (17) – what protects our heart helps protect our brain and lungs too. They are the three critical organs most protected during a drowning in freezing water situation. We have instinctual responses that help protect our brain’s circulation at the expense of blood flow reaching our fingers and toes. During a freezing incident damage to fingers and toes can be extensive and lead to amputations of some of the frozen digits.

Low oxygen levels can affect blood vessels by affecting the cannabinoid system. (3)

Cannabinoid control is varied, and may modulate – cause different actions based on need. The endocannabinoid system involves type 1 and type 2 cannabinoid receptors and TRPV ion channels which are activated by different cannabinoids. Cannabinoid receptor activity may lead to reduced blood flow in some situations and increase it in others, as needs change. CBD and THC can activate both CB1 and CB2 receptors and THC can also activate the TRPV channels. (3)

Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation. ” (3)

CBD oil helped protect cells during low oxygen, hypoxia, in a study regarding refractory epilepsy – resistant to treatment. ~ Fewer seizures if cells are protected from hypoxia & influx of extracellular chemicals. (1)

In addition to hypoxia – oxygen levels, the balance of cannabinoids, THC/CBD, may be important for blood vessel membranes.

Results section: “Experimental data suggested dynamic regulation of endocannabinoids and their receptors in the vascular system [16]. Therefore, we investigated the components of the endocannabinoid system in human aorta and found significantly higher mRNA levels of the cannabinoid receptors CB1 (Figure 1(a)), CB2 (Figure 1(b)), TRPV1 (Figure 1(c)), and GRP55 (Figure 1(d)) in the aneurysms as compared to the samples from controls. Expression of related factors 5HT1A and PPARα was comparable between the groups (data not shown) Mass spectrometry measurements of endocannabinoids showed a significantly lower level of anandamide (Figure 1(c)) & a significantly higher level of 2-arachidonoyl glycerol in aneurysms (Figure 1(d)). Interestingly, aneurysm samples contained a significantly lower amount of the endocannabinoid degradation product arachidonic acid (Figure 1(e)) and palmitoylethanolamide (Figure 1(f)) than the control samples. Therefore, aortic aneurysm showed not only increased level of cannabinoid receptors, but also a different amount of ligands & decreased level of of their degradation products suggesting differentiated, persistent action of endocannabinoids in the aortic wall.” – (C. Gestrich, et al, 2015) (10)

Significance – the ratio: “Mass spectrometry measurements of endocannabinoids showed a significantly lower level of anandamide (Figure 1(c)) and a significantly higher level of 2-arachidonoyl glycerol in aneurysms (Figure 1(d)).” (10) >> Too little of the THC equivalent (anandamide), excess of CBD equivalent cannabinoid (2-AG).

Human Endogenous Retroviral Syncytin-1 protein is also found on the SARS-CoV-2 Spike protein.

The protein Syncytin-1 is present in the spike of SARS-COV2 and is also part of the human genome and is involved in development of the human placenta (13) during conception and pregnancy. “Indeed, alignment of the endogenous elements Syn1 found on human chromosome 7, or Syn2 found on chromosome 6, or HERV-K expressed from chromosome 6, all show a number of sequence motifs with significant similarity to nCoV2019 spike protein.” (12) Anandamide, the THC equivalent endogenous cannabinoid, down-regulates activity of the Syncytin-1 and 2 proteins during development of the placenta. (14)

Syncytin is the endogenous gammaretrovirus envelope that’s encoded in the human genome … We know that if syncytin … is expressed aberrantly in the body, for instance in the brain, which these lipid nanoparticles will go into, then you’ve got multiple sclerosis. The expression of that gene alone enrages microglia, literally inflames and dysregulates the communication between the brain microglia, which are critical for clearing toxins and pathogens in the brain and the communication with astrocytes. It dysregulates not only the immune system, but also the endocannabinoid system, which is the dimmer switch on inflammation.” (15)

The endocannabinoid system is dysregulated in multiple sclerosis and seems to have excess of the THC equivalent, anandamide, and too little of the CBD equivalent, 2-AG. (18)

– Might infection with SARS-CoV-2 be causing changes with the syncytin retrovirus protein in the Spike protein gene that might leave Long-Covid patients with inhibition of the endocannabinoid system and symptoms of cannabinoid deficiency? Over active mast cell symptoms and blood vessel breakdown symptoms might involve reduced cannabinoids or malfunctioning endo cannabinoid system.

Hypoxia seems involved in COVID toes/fingers – the balance of endogenous cannabinoids being produced/released from cell membranes may also be a factor.

COVID19 toes or fingers (reddened & painful) may be hypoxia combined with cannabinoid deficiency leading to worse blood vessel breakdown & even more hypoxia.

Frostbite is a bigger risk for the toes, fingers, because they already may get less circulation, especially in low oxygen & cold situations because the body can protect the brain, heart, and lung’s circulation over the rest of the body – why people can survive cold water drowning. My first job was as a Lifeguard and Water Safety Instructor & learned about frostbite & drowning for that training.

What seems like Covid fingers suddenly became a problem for me when I stopped medical marijuana a couple days ago. Pain, inflammation a little pinker, each fingertip feels bruised and hurts to touch or hold things.

In balance & inhaled, THC & CBD help preserve blood vessel membranes & reduce mast cell activation. mast cell part is in second half of this post: https://transcendingsquare.com/2020/11/10/glyphosate-increases-histamine-both-may-be-a-factor-in-covid19/… I had a little recently – it helped with sensation in my fingers, and has since – symptoms return when I discontinue use and get better when I have medical marijuana products daily. I was a medical marijuana patient while sick with untested CoV19 like infection in Feb/March 2020 and had to quit smoking as a method of intake as respiratory symptoms worsened.

Cannabinoids might help treat a SARS-CoV-2 infection but avoiding smoking it would be better with the respiratory symptoms. (11)

Raynaud’s syndrome – may be autoimmune but is still not well understood – seems like the Covid fingers/toes problem too. (9)

Getting to the point, what have I been doing for my fingers?

  • Exercise-jazz hands- to increase circulation & blood flow to the fingers & am trying to hold my car steering wheel as gently as possible – bruising has occurred basically of all my finger tips. The pinkie fingers are the worst.
  • I have also been trying to eat adequate protein foods as you can’t repair anything in the body without some protein building blocks. & Other nutrients, vit C, B’s, etc. also help.
  • I also picked up some legal everywhere CBD oil drops. The initial pain severity has improved. ** I eventually stopped the CBD drops, we may need the THC in balance for blood vessels: aortic aneurysm was found to have an excess of the CBD equivalent and a lack of the THC equivalent endocannabinoid. (10) Cannabinoids can be released from cell membranes in inflammatory situations – leaving less stable membranes perhaps if too many cannabinoids are released from storage.
  • Stress, physical or emotional, also increase cannabinoid release from membranes. Positive mental attitude, focusing on gratitude and love, has also helped. Quote: “If we have a positive mental attitude, then even when surrounded by hostility, we’ll not lack inner peace. But if our attitude is negative, influenced by fear, suspicion, or helplessness, even when surrounded by our best friends, in comfortable surroundings, we won’t be happy. ” – Dalai Lama @DalaiLama
  • EMF from WiFi exposure can also increase membrane openings and excess chemical flow into cells which can lead to increased membrane breakdown, so I try to use an EMF blocking case when holding my smartphone. The finger positions where I hold the phone most often is where there are sore finger areas too.
  • I have also been using my dielectric orgone blanket wrapped around the sore hands/wrist/left shoulder, about a 30 minutes or so for each area. Gets warm & may help by increasing electrical field activity which might stimulate healing. How to make one: Dielectric Orgone Blankets.
  • Stretching exercises that include the shoulders may help finger numbness problems as a pinched nerve in the shoulder can increase nerve issues in the fingers, ‘pins and needles‘ or numbness & pain. See: Is Your Shoulder Pain Related to Your Numb Hands or Fingers? (2)

Cannabinoid deficiency may also increase pain signaling and… Cannabinoids are part of cell membranes & inflammation causes release of them from membrane storage. Excess release of them may also be adding to blood vessel breakdown.

Magnesium is also essential to control influx of chemicals across the cell membrane. The US standard diet may be more unhealthy for people with African ancestry, who may conserve calcium and waste magnesium more than other ethnic groups, (5), and the US diet is high in calcium and frequently can be low in magnesium. Low magnesium levels could be increasing COVID19 severity, by decreasing apoptosis capability of white blood cells (WBCs).

The genetics of renal calcium sparing at the expense of magnesium may be more common in African ancestry than other ethnic groups leaving them more at risk for low magnesium levels, and reduced ability to fight an infection.

Other APOL1 gene variants may increase risk of chronic kidney disease by 15% and the gene variants are more common in people of African ancestry. (5) The gene difference might provide increased protection against a type of parasite common in Africa: “APOL1 variants may confer resistance against Trypanosoma brucei rhodesiense, the parasite that causes African sleeping sickness.” John Herrmann, PhD, @ablT315I. The gene variants may be increasing risk for more severe COVID19 illness with renal damage. (6) Magnesium wasting might be involved, it would be more alkaline – lower acid production was found with the gene variant:  “However, a recent study suggested that the APOL1 high-risk genotype was associated more strongly with CKD progression among blacks with low net endogenous acid production (NEAP).16” (7)

Magnesium is necessary also, to help keep membrane channels closed. Without it excess as calcium or other chemicals may be able to overload the cell where the calcium acts as a stimulant & can overactivate the cell to point of cell death. One type of magnesium channel is called the MgtE. (8)
Excess calcium may flow into the cell if there isn’t an atom of magnesium to “lock” the channel “doorway.”

*Low vitamin D levels may also be more of a risk for people with darker skin tones who live in northern climates.

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

Reference List

  1. Auzmendi Jeróni Magnesium is also essential to control influx of chemicals across the cell membrane. mo, Palestro Pablo, Blachman Agustín, et al., Cannabidiol (CBD) Inhibited Rhodamine-123 Efflux in Cultured Vascular Endothelial Cells and Astrocytes Under Hypoxic Conditions. Frontiers in Behavioral Neuroscience 2020;14, 32 pages, https://www.frontiersin.org/articles/10.3389/fnbeh.2020.00032/full
  2. Amy Haddad, Is Your Shoulder Pain Related to Your Numb Hands or Fingers? sports-health.com, 11/28/2016 https://www.sports-health.com/blog/your-shoulder-pain-related-your-numb-hands-or-fingers
  3. Benyó Z, Ruisanchez É, Leszl-Ishiguro M, Sándor P, Pacher P. Endocannabinoids in cerebrovascular regulation. Am J Physiol Heart Circ Physiol. 2016;310(7):H785-H801. doi:10.1152/ajpheart.00571.2015 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865067/#!po=1.46104
  4. Erin Cline, Clinical Endocannabinoid Deficiency Syndrome: Can CBD help?, cbdhacker.com, Oct. 10, 2018 https://cbdhacker.com/clinical-endocannabinoid-deficiency-syndrome-can-cbd-help/
  5. Dummer PD, Limou S, Rosenberg AZ, et al. APOL1 Kidney Disease Risk Variants: An Evolving Landscape. Semin Nephrol. 2015;35(3):222-236. doi:10.1016/j.semnephrol.2015.04.008 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562465/
  6. Juan Carlos Q. Velez, Tiffany Caza, Christopher P. Larsen, COVAN is the new HIVAN: the re-emergence of collapsing glomerulopathy with COVID-19 Nature Reviews: Nephrology, 2020; October 2020, pp 565-567 https://www.nature.com/articles/s41581-020-0332-3.pdf via https://twitter.com/EricTopol/status/1290659983890227203?s=20
  7. Pike M, Stewart TG, Morse J, et al. APOL1, Acid Load, and CKD Progression. Kidney Int Rep. 2019;4(7):946-954. Published 2019 Apr 4. doi:10.1016/j.ekir.2019.03.022 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611987/
  8. Fei Jin, Minxuan Sun, Takashi Fujii, et al., Cryo-EM structure of the MgtE Mg2+ channel pore domain in Mg2+-free conditions reveals cytoplasmic pore opening. bioRxiv 2020.08.27.270991; doi: https://doi.org/10.1101/2020.08.27.270991 https://www.biorxiv.org/content/10.1101/2020.08.27.270991v1
  9. Raynaud’s Disease, medlineplus.gov, https://medlineplus.gov/raynaudsdisease.html#:~:text=Raynaud’s%20disease%20is%20a%20rare,areas%20turn%20white%20and%20blue
  10. Christopher Gestrich, Georg D. Duerr, Jan C. Heinemann, et al., Activation of Endocannabinoid System Is Associated with Persistent Inflammation in Human Aortic Aneurysm. BioMed Research International, Special Issue: Novel Biomarkers and Treatments of Cardiac Diseases Volume 2015, Article ID 456582, https://doi.org/10.1155/2015/456582 https://www.hindawi.com/journals/bmri/2015/456582/
  11. Sainz-Cort, A., Heeroma, J.H. The interaction between the endocannabinoid system and the renin angiotensin system and its potential implication for COVID-19 infection. J Cannabis Res, 2, 23 (2020). https://doi.org/10.1186/s42238-020-00030-4 https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00030-4
  12. profbillg1901, Response to nCoV2019 Against Backdrop of Endogenous Retroviruses. Feb 2020, https://virological.org/t/response-to-ncov2019-against-backdrop-of-endogenous-retroviruses/396
  13. Ruebner M, Langbein M, Strissel PL, Henke C, Schmidt D, Goecke TW, Faschingbauer F, Schild RL, Beckmann MW, Strick R. Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis. J Cell Biochem. 2012 Jul;113(7):2383-96. doi: 10.1002/jcb.24110. PMID: 22573555. https://www.researchgate.net/publication/224933500_Regulation_of_the_Human_Endogenous_Retroviral_Syncytin-1_and_Cell-Cell_Fusion_by_the_Nuclear_Hormone_Receptors_PPAR_gammaRXR_alpha_in_Placentogenesis
  14. Szilagyi JT, Composto-Wahler GM, Joseph LB, et al. Anandamide down-regulates placental transporter expression through CB2 receptor-mediated inhibition of cAMP synthesis. Pharmacol Res. 2019;141:331-342. doi:10.1016/j.phrs.2019.01.002 https://pubmed.ncbi.nlm.nih.gov/30610963/
  15. Joseph Mercola, How COVID-19 ‘Vaccines’ May Destroy the Lives of Millions. Feb 14, 2021, mercola.com, https://articles.mercola.com/sites/articles/archive/2021/01/31/covid-19-vaccine-gene-therapy.aspx?cid_source=twitter&cid_medium=social&cid_content=twitterhealth&cid=lead_20210131
  16. Maria Grazia Signorello, Giuliana Leoncini, Anandamide Induces Platelet Nitric Oxide Synthase through AMP‐Activated Protein Kinase. Lipids Vol 53, Issue 9, Sept 2018, pp 851-861 https://aocs.onlinelibrary.wiley.com/doi/abs/10.1002/lipd.12100?hss_channel=tw-65498903&utm_medium=social&utm_content=80709643&utm_source=twitter
  17. Calapai, F.; Cardia, L.; Sorbara, E.E.; Navarra, M.; Gangemi, S.; Calapai, G.; Mannucci, C. Cannabinoids, Blood–Brain Barrier, and Brain Disposition. Pharmaceutics, 2020, 12, 265. https://doi.org/10.3390/pharmaceutics12030265 https://www.dropbox.com/s/v4z1uumek52yesv/pharmaceutics-12-00265%20%281%29.pdf?dl=0
  18. Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F, De Chiara V, Battistini L, Bernardi G, Bernardini S, Martino G, Maccarrone M. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain. 2007 Oct;130(Pt 10):2543-53. doi: 10.1093/brain/awm160. Epub 2007 Jul 11. PMID: 17626034. https://pubmed.ncbi.nlm.nih.gov/17626034/
  19. Mass Cell Activity and Hyperexcitable Mood, https://transcendingsquare.com/2020/11/21/mast-cell-activity-hyperexcitable-mood/

Magnesium- protects against vascular calcification

Summary – Calcification is damaging throughout the body, not just in the kidneys, and magnesium can help reverse calcification but intestinal absorption of the magnesium may be a problem, increased urinary or sweat losses may also be a problem, and/or low protein and low phospholipids in the diet or inability to make the chemicals endogenously may limit the amount of back stock of magnesium that the body can store. Background info: We can not have excess magnesium in the electrically active ionic form (or other ions). Extra magnesium is held in a non-electrically active form on protein transport molecules and the phospho-chemical ribonucleotide ATP. Other nutrients and bitter tasting plant phytonutrients may also be needed to prevent calcification – vitamins D and K, magnesium, iodine, selenium, zinc are discussed in this post.

Magnesium, in particular, is a nutrient essential for vascular health & prevention or reversal of vascular calcification (VC).

Magnesium helps for prevention and reversal of vascular calcification (VC) – plaque build up along vessel walls of deposits of calcium and cholesterol which leads to stiffening and dysfunction of the vessels. Cholesterol buildup in the blood vessels was wrongly blamed exclusively on fat in the diet and cholesterol from eggs initially and people were instructed to not eat eggs and other cholesterol rich foods but we can make our own cholesterol too, and eventually it was recognized that excess carbohydrates was also a causal factor of vascular calcification. It has also been shown that excess calcium (or phosphorus) in ratio to magnesium availability may also be a primary causal factor of VC; and lack of other trace minerals, zinc, iodine, selenium, or vitamin D (12) can also be risk factors for vascular calcification.

Calcification in renal tissue or other organs of the body would cause dysfunction in different ways – disrupting the function of that organ type. transcendingsquare.com/calcification. Calcification of soft tissue and blood vessels is typically a problem associated with aging but it is seen early in life for young patients with chronic kidney disease on dialysis treatments and greatly increases risk of early death due to heart disease. (17)

Medial calcification is associated with increased vascular stiffening and cardiac workload, poor coronary perfusion, and sudden cardiac death and is thought to be responsible for the high cardiovascular mortality observed in [Chronic Kidney Disease] CKD patients.4 Significantly, even children and adolescents on dialysis develop vascular calcification and have a vastly elevated risk for cardiovascular mortality when compared with the normal age-matched population. Strikingly, the risk in adolescence is equivalent to that of the very elderly in the general population. 25” (17) *Medial calcification causes stiffening of the vessel wall but does not include plaque deposits that obstruct the interior of the blood vessel. (18)

Chronic kidney disease (CKD) afflicts more than 10% population and is becoming a major public health problem worldwide (Denic et al., 2016Yang et al., 2020). The prevalence of CKD in the elderly reaches to 14.3–41.3% in some countries (Susnik et al., 2017). CKD is also an independent risk factor for cardiovascular complications and all-cause mortality.” (19)

Both calcium and magnesium are electrically active minerals and the body has many methods to try to keep the levels of the minerals in a narrow range within the blood or cell fluid. Magnesium is kept at higher levels within cells and calcium has higher levels within the blood stream and extracellular fluid. Magnesium within cells helps inhibit calcium ion channels from opening and allowing calcium to enter from the surrounding tissue fluid.

Magnesium has inhibitory roles for several types of receptors and ion channels and within the brain. Other plant phytonutrients and vitamins, minerals, free amino acids, and nucleotides like ATP can also act as signals to cells and receptors on the cell surfaces, such as bitter taste receptors. Taste receptors can be found on the surface of immune cells, not just on the tongue, they are also found within the kidney and in the cells of the intestinal lining.

Membrane receptors can act like a lever – activate the lever on the outside of the cell and changes occur in the shape of the protein on the inside of the cell that lead to other actions occurring such as gene transcription of a specific protein type – so bitter taste receptors found in areas of the body besides on the tongue tend to be functioning as biologic machines that cause action besides a nerve signal to the brain saying “tastes bitter, don’t eat too much“. Within the kidneys bitter taste receptors can be activated by bitter tasting alkaloid phytonutrients and cause more uptake of calcium for removal in the urine output, more is included later in the post on this topic.

Cytokine types can lead to inflammatory actions or anti-inflammatory actions depending on the type. Cytokines are chemical signals that can be released by one cell to cause a change in another cell or in the original cell. Cytokines can act as signals to immune cells to activate a change in the function or type of cytokines it releases.

Magnesium prevents osteogenic vascular smooth muscle cell transdifferentiation in in vitro and in vivo models.” (1)

Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear.” [Vascular calcification (VC)] (2) .

TRPM7 is a magnesium membrane ion channel that is involved in embryologic development of the heart and kidneys. The TRPM7 ion channels also are involved in regulation of gene expression with the actions of an intracellular protein kinase domain. (3, 5)

Interleukin-18 is a cytokine that may be released by macrophages, dendritic cells, or the adrenal gland. It is involved in fighting infection and preventing cancerous tumor cell growth and may be increased by other stress conditions that activate the adrenal gland. Elevated levels of IL-18 lead to longer episodes of non-REM sleep which is deeper sleep and may help reduce stress effects on the body. Osteoblast produced IL-18 suppresses osteoclast bone cells, which break down bone. (7) The role of IL-18 in inflammation does seem unclear.

Renal cellular senescence (alive but stop cell division and growth of new cells) and premature aging theory of early kidney disease.

Increasing evidence indicates that there is a striking similarity between the manifestations of progressive [Chronic Kidney Disease] CKD and aging kidney (Docherty et al., 2020Goligorsky, 2020Zhou et al., 2020). As such, CKD is often viewed as a form of premature and accelerated aging. Aging and CKD also share many common triggers and underlying mechanisms, such as cellular senescence, oxidative stress, inflammation, mitochondrial dysfunction, RAAS activation and hyperactive Wnt/β-catenin (Sturmlechner et al., 2017Xiong and Zhou, 2019). In various animal models and human kidney biopsies, accumulation of senescent cells in different renal compartments is increasingly recognized as a common pathway leading to premature aging and CKD (Docherty et al., 2019Docherty et al., 2020).” (19)

Children receiving renal dialysis treatment were found to have DNA damage, reduced repair of damaged DNA, and faster than normal cellular senescence in samples of their vascular smooth muscle cells. Increased calcification and osteogenic cell differentiation was also found. Medications that blocked a type of DNA damage signaling reduced both the inflammation and the calcification. Question – why are they having DNA damage and reduced repair, and accelerated cellular senescence?

Vascular smooth muscle cells cultured from children on dialysis exhibited persistent DNA damage, impaired DNA damage repair, and accelerated senescence. Under calcifying conditions vascular smooth muscle cells from children on dialysis showed increased osteogenic differentiation and calcification. These changes correlated with activation of the senescence-associated secretory phenotype (SASP), an inflammatory phenotype characterized by the secretion of proinflammatory cytokines and growth factors. Blockade of ataxia-telangiectasia mutated (ATM)-mediated DNA damage signaling reduced both inflammation and calcification. Clinically, children on dialysis had elevated circulating levels of osteogenic SASP factors that correlated with increased vascular stiffness and coronary artery calcification. These data imply that dysregulated mineral metabolism drives vascular “inflammaging” by promoting oxidative DNA damage, premature senescence, and activation of a pro-inflammatory SASP.” (17)

Zinc deficiency causes problems with repair of DNA damage in an animal based study. “Zinc is an essential component of numerous proteins involved in the defense against oxidative stress and DNA damage repair. Studies in vitro have shown that zinc depletion causes DNA damage.” (20) Zinc has a variety of roles in renal health and in gene transcription and will be discussed more later in the post.

Hyperphosphatemia is more common in aging, and is a risk of Chronic Kidney Disease and dialysis treatment — it is also a cause of cellular senescence in muscle cells in an animal based study. “Hyperphosphatemia is an aging-related condition involved in several pathologies. … Knocking-down ILK expression increased autophagy and protected cells from senescence induced by hyperphosphatemia.” (21) Hyperphosphatemia in renal health and calcification will also be discussed more later in the post. Hypothyroidism and iodine are also discussed. Thyroid hormone is involved in the control of phosphorus levels in blood serum and excretion or retention within the kidneys. Either hypo or hyperthyroidism can affect phosphorus levels. (22) Perhaps a combination of nutrient related problems is leading to early kidney disease.

The Thyroid Hormone Receptor when activated by T3 Thyroid hormone can increase DNA damage, seen with hyperthyroidism in an animal based study. T3 hormone also activated the ATM/PRKAA protein kinase (23) of the same type that was elevated in the children with early kidney disease, mentioned in the earlier excerpt, (17) , though the actions then performed by the kinase may be different. Interesting – noted.

T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate–activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration.” (23)

Magnesium sulfate – Epsom salt can inhibit inflammatory cytokine production that can lead to bone matrix breakdown.

Adequate magnesium sulfate (MgSO4, Epsom salt) can help inhibit IL-6 and TNF-alpha production and was found to be linked to lower Nf-Kb levels. The magnesium working intracellularly seemed to be the causal factor for the reduction in inflammatory cytokine production rather than the sulfate (prenatal/preterm birth study). (4)

Vitamin K2 is also helpful with magnesium & calcium balance and reducing stress related bone loss.

When bone cells differentiate into osteoblasts or osteoclasts it is telling the bone matrix to either release calcium and magnesium and break down bone tissue, or to store more of it in new bone tissue (osteogenesis). So chronic low magnesium levels along with calcification of vascular and other soft tissue may also be due to inflammatory cytokines signaling more release of calcium and magnesium from the bones. Stress increases chemical stress on the body and can lead to weakening of the bones with increased osteoporosis changes. Adequate Vitamin K2 can help with calcium, vitamin D and magnesium metabolism and with bone health.

Vitamin K2 supplementation did help reduce calcification in an animal based study. “Arterialization, CKD, and vitamin K antagonism all significantly increased, whereas K2 supplementation attenuated calcification in healthy rats and rats with CKD.” (16)

Vascular calcification can also involve plaque deposits that obstruct the blood vessel.

Cholesterol and fatty deposits within the blood vessels may be more like the body trying to scab over excess calcium in a form that is no longer electrically active within the blood stream, rather than primarily or exclusively a problem of too much cholesterol or other fats in the diet. Calcium deposits and fatty deposits can be found in other tissue besides blood vessels, such as renal tubules and in vascular skin conditions such as calciphylaxis (previous posts/calciphylaxis) or calcinosis.

Screening for calcium in blood vessels may help predict who is more at risk for severe heart disease:

Analysing 52 previous studies, the international team of researchers found that people who have abdominal aortic calcification (AAC) have a two to four times higher risk of a future cardiovascular event. The study also found the more extensive the calcium in the blood vessel wall, the greater the risk of future cardiovascular events and people with AAC and chronic kidney disease were at even greater risk than those from the general population with AAC. Calcium can build up in the blood vessel wall and harden the arteries, blocking blood supply or causing plaque rupture, which is a leading cause of heart attacks and strokes.”

New research reveals early warning sign for heart disease. 14 January 2021 (24)

Causes of chronically low magnesium: certain diuretic medications, reduced kidney function, increased sweat loss, poor intestinal absorption, and low dietary intake.

Magnesium levels tend to be low in patients with kidney disease because of use of certain diuretics that cause magnesium wasting by the renal tubules, reduced function of the renal tubules at reabsorbing magnesium, and by low dietary intake. (1, previouspost) Patients with chronic kidney disease may be recommended to take a magnesium supplement three times per day equaling 1200 mg/day (15) which is about three times the RDA recommendation for normal health – chronic kidney disease is not normal health however.

Thiazide diuretics are a worse risk for magnesium wasting in the urine output (14) than “potassium-sparing diuretics such as amiloride.” (15)

Maintenance therapy may require oral administration of Mg2+ oxide (400 mg twice daily or three times daily) for as long as the risk factors for Mg2+ deficiency exist. Oral Mg2+ gluconate (500 mg twice daily or three times daily) can also be used. In addition, there are several slow-release Mg2+ preparations. As noted, is also important to address the underlying cause, and if diuretic therapy is being used, consideration should be given to the use of potassium-sparing diuretics such as amiloride, which can increase Mg2+ reabsorption in the cortical collecting duct. ” (15)

Subpopulations known to be particularly susceptible to the toxic effects of calcium include individuals with renal failure, those using thiazide diuretics (Whiting and Wood, 1997), and those with low intakes of minerals that interact with calcium (for example, iron, magnesium, zinc).”)

from: Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride, Jan 1, 1997 (14) (nih-reports/previouspost)

Poor intestinal absorption of magnesium can be another reason for someone having low magnesium even though there is good magnesium sources in the diet.

Use of magnesium sulfate (Epsom salt) foot-soaks or baths might be a gentle and effective way to increase magnesium absorption for kidney or prenatal patients (or heart disease, diabetic, or cognitive patients) in a form that bypasses any intestinal malabsorption of magnesium. Calcium may be preferentially absorbed, especially if hormone/vitamin D levels are elevated. Posts on magnesium sources and role in health: 1) Epsom Salt Foot-soaks, 2) Magnesium – essential for eighty percent of our body’s chemistry. , 3) To have optimal Magnesium needs Protein and Phospholipids too., 4) Hypomagnesemia symptoms and causes list

Health requires all of the nutrients in a good balance with each other.

Excess calcium or excess vitamin D can lead to lower magnesium absorption and various negative symptoms. (previous post) Low magnesium may also be involved in the fatigue and mitochondrial dysfunction seen in fibromyalgia, as magnesium along with NAD+ is essential for mitochondria function. (6)

Patients with diabetes are more at risk for renal damage over time and also tend to be low in magnesium. Opioid pain killers do not provide pain relief for patients with diabetes unless magnesium was also given and a larger dose of magnesium reduced pain as much or more than the opioid plus magnesium intravenous dose. See post: G3.6.1.8: If magnesium deficiency is cause of a diabetic patient’s pain, why give opioids instead?. – excerpt from effectivecare.info/G3. Stress & Relaxation a webpage that includes more information about TRP channels, magnesium and calcium, and their role in creating or reducing oxidative stress damage.

Renal health – kidney health – is a combination of adequate water, magnesium, potassium, and not too much total protein on average, and not excess sodium, calcium and phosphorus on average; as well as avoiding other kidney damaging toxins or chronically elevated blood sugar levels. Post: Make every day Kidney Appreciation Day. Other nutrients are also important for renal health including zinc, iodine, selenium, and vitamin D. For more on the topic of calcification, heart disease & magnesium, and vitamin D, zinc, iodine, and selenium see post: Links on heart disease, calcium and iodine, and/or transcendingsquare.com/calcification.

Iodine, Hypothyroidism, & the goitrogenic halides: fluoride, bromide, and chloride.

Excess fluoride, bromide, perchlorate, can interfere with iodine levels or replace it in a molecule if we have too little iodine. The fluoride, bromide, or chloride atom within the molecule wouldn’t function correctly. (effectivecare.info/G9. Iodine & Thyroid) The imbalance in iodine to other halide minerals (fluoride, bromide, or chloride) could increase hypothyroid symptoms without showing up as low levels of thyroid hormone so the problem might remain undiagnosed.

Hypothyroidism is more common among patients with chronic kidney disease than on average. “Hypothyroidism is highly prevalent in chronic kidney disease (CKD) patients…” (12) Trace mineral deficiency can affect other nutrients or minerals absorption or actions on the body. Selenium and iodine need to be in balance for optimal health. Deficiency of selenium is linked to increased risk of kidney disease. (11)

Phosphorus in excess can be damaging to kidney health.

Excess phosphorus intake whether from the diet (carbonated beverages would be a source) or from some types of dialysis treatments can increase vascular calcification, and also deficiency of vitamin D by reducing Sirt1 protein which has beneficial anti-inflammatory effects. (12)

Hyperphosphatemia induces [vascular calcification] VC by osteogenic conversion, apoptosis, and senescence of VSMCs through the Pit-1 cotransporter, which can be retarded by the sirt1 activator resveratrol. Proinflammatory adipocytokines released from dysfunctional perivascular adipose tissue (PVAT) mediate medial calcification and arterial stiffness. Sirt1 ameliorates release of PVAT adipokines and increases adiponectin secretion, which interact with FoxO 1 against oxidative stress and inflammatory arterial insult. Conclusively, Sirt1 decelerates VC by means of influencing endothelial NO bioavailability, senescence of ECs and VSMCs, osteogenic phenotypic transdifferentiation, apoptosis of VSMCs, ECM deposition, and the inflammatory response of PVAT. Factors that aggravate VC include vitamin D deficiency-related macrophage recruitment and further inflammation responses. Supplementation with vitamin D to adequate levels is beneficial in improving PVAT macrophage infiltration and local inflammation, which further prevents VC.” (12)

FoxO’s transcription factors are downstream signals of Sirt1, and activation of Sirt1 induces FoxO3a expression to suppresses cellular ROS…” (12)

Zinc is needed for gene transcription of bitter taste receptors & other proteins.

Trace minerals share some mineral transport proteins which is why some minerals have more impact on the level of another one such as copper and zinc.

Zinc may also be important for healthy kidneys (and body) because of involvement in gene transcription as well as in enzymes. Zinc sulfate helped prevent renal calcification in an animal based study. “ZnSO4 increased the abundance of zinc-finger protein TNF-a–induced protein 3 (TNFAIP3, also known as A20), a suppressor of the NF-kB pathway, by zinc-sensing receptor ZnR/GPR39-dependent upregulation of TNFAIP3 gene expression.” (10)

Zinc is also necessary for the body to transcribe the gene for the protein that is made into bitter taste receptors (or other types of taste and odor receptors), so if a person has poor taste and smell sensation then they may also have low zinc levels and low levels of bitter taste receptors in the kidneys (and other areas of the body). See post: Zinc, cancer, and bitter taste receptors.

Bitter taste receptors in the kidneys & plant alkaloids

Why do we have bitter taste receptors in the kidneys? because when activated they increase the removal of calcium. Alkaloid plant phytonutrients (“phellodendrine and coptisine“) have been found to activate the renal taste receptors and increase uptake of calcium as a result. (8) Caffeine is also an alkaloid phytonutrient. (9)

Plants are the major sources of alkaloids, especially certain families of flowering plants, including Papaveraceae (poppy – [poppy seeds are a source]), Amaryllidaceae (amaryllis), Ranunculaceae (buttercups), Solanaceae (nightshades), and Stemonaceae.” (9)

The Solanaceae (nightshades) plants include tomatoes, white potatoes, eggplant, Bell peppers, tobacco, and several plants that have seeds or other plant material with toxic effects – Belladonna, Jimson weed, Nightshade, Datura, and Bittersweet. (images search results)

Phytonutrients used medicinally in Traditional Chinese Medicine and other herbal care practices are listed in this document with a few excerpts and notes: TCM and other phytonutrients for kidney health. Many medicinal herbs contain bitter tasting phytonutrients and often extracts of medicinal plants are made into medicines such as chloroquine from quinine tree bark. Quinine is an alkaloid derived from the bark of the Cinchona tree (Fig. 7.1). “ (13)

Baking to do list – make lemon zest poppy seeds muffins because I love them and they may be good for my renal health.

Team – magnesium sulfate, zinc, iodine, selenium, Vitamin D, protein, phospholipids.

Secondary take home point – while magnesium, and particularly topical Epsom salts (magnesium sulfate) may help reverse or prevent vascular calcification within the kidneys (and rest of the body) – other nutrients may also be essential to help in that process such as zinc, iodine, and selenium. Adequate vitamin D is also essential while excess may increase calcium excess and add to problems with poor intestinal absorption. Adequate protein and phospholipids are also necessary to maintain a surplus supply of magnesium within cells.

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

Reference List

  1. Anique D. ter Braake, Marc G. Vervloet, Jeroen H.F. de Baaij and Joost G.J. Hoenderop. Magnesium to prevent kidney disease–associated vascular calcification: crystal clear? Nephrol Dial Transplant (2020) 1–9 doi: 10.1093/ndt/gfaa222 https://www.dropbox.com/s/zcjemguqe6tsjdy/gfaa222.pdf?dl=0
  2. Zhang K, Zhang Y, Feng W, Chen R, Chen J, Touyz RM, Wang J, Huang H. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation. Arterioscler Thromb Vasc Biol. 2017 Oct;37(10):1933-1943. doi: 10.1161/ATVBAHA.117.309161. Epub 2017 Aug 31. PMID: 28860220. https://pubmed.ncbi.nlm.nih.gov/28860220/
  3. Jingjing Duan, Zongli Li, Jian Li, Raymond E. Hulse, Ana Santa-Cruz, William C. Valinsky, Sunday A. Abiria, Grigory Krapivinsky, Jin Zhang, David E. Clapham. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proceedings of the National Academy of Sciences Aug 2018, 115 (35) E8201-E8210; DOI: 10.1073/pnas.1810719115 https://www.pnas.org/content/115/35/E8201
  4. Sugimoto J, Romani AM, Valentin-Torres AM, et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol. 2012;188(12):6338-6346. doi:10.4049/jimmunol.1101765 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884513/
  5. Demeuse P, Penner R, Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol. 2006;127(4):421-434. doi:10.1085/jgp.200509410 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151514/
  6. Yamanaka R, Tabata S, Shindo Y, et al. Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress. Sci Rep. 2016;6:30027. Published 2016 Jul 26. doi:10.1038/srep30027 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960558/
  7. Interleukin 18 – an overview, sciencedirect.com, https://www.sciencedirect.com/topics/neuroscience/interleukin-18
  8. Liang J, Chen F, Gu F, Liu X, Li F, Du D. Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells. Mol Cell Biochem. 2017 Apr;428(1-2):193-202. doi: 10.1007/s11010-016-2929-1. Epub 2017 Feb 24. PMID: 28236092. https://pubmed.ncbi.nlm.nih.gov/28236092/
  9. Chen C., Lin L. (2020) Alkaloids in Diet. In: Xiao J., Sarker S., Asakawa Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-13-1745-3_36-1 https://link.springer.com/referenceworkentry/10.1007%2F978-981-13-1745-3_36-1
  10. Voelkl, J., Tuffaha, R., Luong, T. T. D., Zickler, D., Masyout, J., Feger, M., Verheyen, N., Blaschke, F., Kuro-o, M., Tomaschitz, A., Pilz, S., Pasch, A., Eckardt, K. U., Scherberich, J. E., Lang, F., Pieske, B., & Alesutan, I. (2018). Zinc inhibits phosphate-induced vascular calcification through TNFAIP3-mediated suppression of NF-kB. Journal of the American Society of Nephrology29(6), 1636-1648. https://doi.org/10.1681/ASN.2017050492 https://utsouthwestern.pure.elsevier.com/en/publications/zinc-inhibits-phosphate-induced-vascular-calcification-through-tn
  11. Shuang Li, Qingyu Zhao, Kai Zhang, et al., Se deficiency induces renal pathological changes by regulating selenoprotein expression, disrupting redox balance, and activating inflammation. Metallomics, 2020,12, 1576-1584 https://pubs.rsc.org/en/content/articlelanding/2020/mt/d0mt00165a/unauth#!divAbstract
  12. Lu C-L, Liao M-T, Hou Y-C, Fang Y-W, Zheng C-M, Liu W-C, Chao C-T, Lu K-C, Ng Y-Y. Sirtuin-1 and Its Relevance in Vascular Calcification. International Journal of Molecular Sciences. 2020; 21(5):1593. https://www.mdpi.com/1422-0067/21/5/1593/htm https://www.dropbox.com/s/p0b3353ikjj6xzz/ijms-21-01593-v2.pdf?dl=0
  13. Quinine: an overview, sciencedirect.com, https://www.sciencedirect.com/topics/chemistry/quinine#:~:text=Quinine%20is%20an%20alkaloid%20derived,for%20the%20treatment%20of%20malaria.
  14. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride, Jan 1, 1997 http://iom.nationalacademies.org/Reports/1997/Dietary-Reference-Intakes-for-Calcium-Phosphorus-Magnesium-Vitamin-D-and-Fluoride.aspx
  15. Kevin J. Martin,  Esther A. González and Eduardo Slatopolsky, Clinical Consequences and Management of Hypomagnesemia,  doi: 10.1681/ASN.2007111194 (JASN November 1, 2009 vol. 20 no. 11 2291-2295) http://jasn.asnjournals.org/content/20/11/2291.long
  16. Cozzolino M, Mangano M, Galassi A, Ciceri P, Messa P, Nigwekar S. Vitamin K in Chronic Kidney Disease. Nutrients. 2019;11(1):168. Published 2019 Jan 14. doi:10.3390/nu11010168 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356438/
  17. Pilar Sanchis, Chin Yee Ho, Yiwen Liu, et al., Arterial “inflammaging” drives vascular calcification in children on dialysis. Kidney International, Vol 95, Iss 4, April 2019, Pages 958-972 https://www.sciencedirect.com/science/article/pii/S0085253819300353#
  18. Kin Hung Liu, Winnie Chiu Wing Chu, Alice Pik Shan Kong, et al., US Assessment of Medial Arterial Calcification: A Sensitive Marker of Diabetes-related Microvascular and Macrovascular Complications. Radiology 2012 265:1, 294-302 https://pubs.rsna.org/doi/10.1148/radiol.12112440#:~:text=Medial%20arterial%20calcification%20(MAC)%2C,the%20arterial%20lumen%20(2).
  19. Xu Jie, Zhou Lili, Liu Youhua, Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies. Frontiers in Pharmacology, 11;2020, pp1898 DOI=10.3389/fphar.2020.601325 https://www.frontiersin.org/articles/10.3389/fphar.2020.601325/full “Furthermore, hyperphosphatemia induced by Klotho depletion in CKD …”
  20. Song Y, Leonard SW, Traber MG, Ho E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr. 2009;139(9):1626-1631. doi:10.3945/jn.109.106369 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151020/
  21. Sosa P, Alcalde-Estevez E, Plaza P, et al. Hyperphosphatemia Promotes Senescence of Myoblasts by Impairing Autophagy Through Ilk Overexpression, A Possible Mechanism Involved in Sarcopenia. Aging Dis. 2018;9(5):769-784. Published 2018 Oct 1. doi:10.14336/AD.2017.1214 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147593/
  22. Ana I. Alcalde, Manuel Sarasa, Demetrio Raldúa, José Aramayona, Rosa Morales, Jürg Biber, Heini Murer, Moshe Levi, Víctor Sorribas, Role of Thyroid Hormone in Regulation of Renal Phosphate Transport in Young and Aged Rats, Endocrinology, Volume 140, Issue 4, 1 April 1999, Pages 1544–1551, https://doi.org/10.1210/endo.140.4.6658 https://academic.oup.com/endo/article/140/4/1544/2990299
  23. Alberto Zambrano, Verónica García-Carpizo, María Esther Gallardo, Raquel Villamuera, Maria Ana Gómez-Ferrería, Angel Pascual, Nicolas Buisine, Laurent M. Sachs, Rafael Garesse, Ana Aranda; The thyroid hormone receptor β induces DNA damage and premature senescence. J Cell Biol 6 January 2014; 204 (1): 129–146. doi: https://doi.org/10.1083/jcb.201305084 https://rupress.org/jcb/article/204/1/129/37496/The-thyroid-hormone-receptor-induces-DNA-damage
  24. New research reveals early warning sign for heart disease. 14 January 2021, ecu.edu.au, https://www.ecu.edu.au/news/latest-news/2021/01/new-research-reveals-early-warning-sign-for-heart-disease

From a previous post “Pomegranate peel/extract is also a source of EGCG. Pomegranate preparation tips and more information about health benefits is able on page effectivecare.info/G13. Pomegranate. It may have anti-inflammatory activity through down regulation of Fox03a (4) which is a protein that can increase oxidative stress damage in mitochondria (5) where the NAD+ chemical reactions are taking place.”

  • 4. Liu S, Zhang X, Sun M, Xu T and Wang A: FoxO3a plays a key role in the protective effects of pomegranate peel extract against amikacin-induced ototoxicity. Int J Mol Med 40: 175-181, 2017 https://www.spandidos-publications.com/10.3892/ijmm.2017.3003
  • 5. Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013 Oct;63:222-34. doi: 10.1016/j.freeradbiomed.2013.05.002. Epub 2013 May 7. PMID: 23665396. https://pubmed.ncbi.nlm.nih.gov/23665396/

12. Chien-Lin Lu, Min-Tser Liao, Yi-Chou Hou, et al., Sirtuin-1 and Its Relevance in Vascular Calcification. Int. J. Mol. Sci. 2020, 21, 1593; doi:10.3390/ijms21051593 “FoxO’s transcription factors are downstream signals of Sirt1, and activation of Sirt1 induces FoxO3a expression to suppresses cellular ROS…” (12)

Addition, new research about factors that indicate senescence occurring in cells after starvation time period rather than remaining in the quiescent stage of ongoing cell division: Same difference: Predicting divergent paths of genetically identical cells. Jan 11, 2021, utsouthwestern.edu https://www.utsouthwestern.edu/newsroom/articles/year-2021/predicting-divergent-paths-of-genetically-identical-cells.html

‘Allergic’ to flickering lights?

Flickering lights, whether shadows of trees on the road on a bright sunny day, or fast action movies, or actual strobe lights, have all been problems for me in the past. Migraine headaches after a light show at a music concert became expected. I stopped going to them or action movies – or once or twice went but wore sunglasses the whole time.

Epilepsy? Strobe lights of a certain timing can trigger epileptic seizures but I haven’t had seizures of any typical sort. I recently consulted a neurologist who ordered an EEG – which I wasn’t informed included intense strobe lights, for many minutes. I didn’t have a seizure during the EEG but I did have a bad mood meltdown/reaction almost immediately after leaving the office and it lasted for an hour or two instead of a few minutes to a half hour which has been more typical of my odd behavior symptoms.

I had been fairly stable ever since finding out more about Mast Cell Activation Syndrome, and avoiding most of the ‘avoid list’ foods. So search engine – yes, theoretically, someone else also wondered about why people with overactive mast cell problems are also sensitive to flickering lights – may be suggesting to the brain nystagmus of the eyes: (How Flickering Light can Cause an Allergic (MCAS) Response), – or it really could be the EMF of electronic screens too – but that wouldn’t explain why I was triggered by strobe lights used for an EEG screening, or the lights of an action movie. Just a busy black and white pattern can give me a slight headache feeling.

Not a definitive answer, however there often aren’t definitive answers with unusual health symptoms. Getting the problem under control is the goal, applying labels is more about society or insurance claims.

So – if you see me in sunglasses – it may be because I’m ‘allergic’ to the flickering of lights.

Fluorescent lighting causes flickering. In animal-based research it was found to affect inflammation and immune responses. Cellular perception of oxidative stress may lead to an increase in IL1-beta and TNF. Seeing flickering lights may suggest to innate genetic pathways that we may need to make an additional immune effort – and does.

In all three organisms, Fluorescent light (FL) induced transcriptional changes of the acute phase response signaling pathway and modulated inflammation and innate immune responses. Our pathway and gene clustering analyses suggest cellular perception of oxidative stress is promoting induction of primary up-stream regulators IL1B and TNF. … Overall, the conserved nature of the genetic responses observed after FL exposure, among fishes and a mammal, suggest the presence of light responsive genetic circuitry deeply embedded in the vertebrate genome.” (2)

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

Art is not what you see, but what you make others see.” – Edgar Degas

Confirmation or congeniality bias – we tend to believe information that supports our current belief far more readily than information that contradicts it. We may be twice as likely to find and believe information that is in agreement with our belief than to give credence to information that contradicts it. (Hart et al, 2009, 3) (Decision making ebook/WiseInsights)

To see a new idea or solution we may first have to take off our blinders that keep us focused on an old idea or more limited scope of what might be possible answers. Flickering lights give me a headache and can affect my mood when more intense or for more extended length of time – am I just imagining it? or it did happen? many times – yes, and wearing dark sunglasses is protective for me, whether watching an action movie, rock concert, walking around a grocery store lit by fluorescent lights, or driving at night in urban areas with a lot of highway lights and headlights from oncoming traffic.

The mechanism of action of flickering lights triggering an immune reaction may involve a health status pathway of normal immune function that may include detecting nystagmus like light patterns as theorized regarding MCAS, (1, 5), and/or it may involve intense blue light over activating light sensing TRP channels until depolarization doesn’t occur as rapidly as in normal vision. (6) Whatever the mechanism – flickering lights inducing illness may have been weaponized. (4)

Sunglasses – check.

Reference List

  1. Russell Irvin Johnston, @russjj, How Flickering Lights can Cause an Allergic (MCAS) Response. March 9, 2019, medium.com, https://medium.com/@russjj/how-lights-flickering-can-cause-an-allergic-mcas-response-c0e250ef37f9
  2. Boswell M, Lu Y, Boswell W, et al., Fluorescent Light Incites a Conserved Immune and Inflammatory Genetic Response within Vertebrate Organs (Danio Rerio, Oryzias Latipes and Mus Musculus). April 2019, Genes 10(4):271, DOI: 10.3390/genes10040271 https://www.researchgate.net/publication/332195692_Fluorescent_Light_Incites_a_Conserved_Immune_and_Inflammatory_Genetic_Response_within_Vertebrate_Organs_Danio_Rerio_Oryzias_Latipes_and_Mus_Musculus
  3. Hart W, Albarracín D, Eagly AH, Brechan I, Lindberg MJ, Merrill L. Feeling validated versus being correct: a meta-analysis of selective exposure to information. Psychol Bull. 2009;135(4):555-588. doi:10.1037/a0015701 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797953/
  4. Yasemin Saplakoglu, Russia Claims Strobe-Light Weapon Causes Nausea & Hallucinations. Is That Even Possible?, February 15, 2019, livescience.com, https://www.livescience.com/64774-russia-navy-weapon-hallucinate.html
  5. Naren Srinivasan, Oliver Gordon, Susan Ahrens, et al., Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 2016;5:e19662 DOI: 10.7554/eLife.19662 https://elifesciences.org/articles/19662Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity.
  6. Katz B, Payne R, Minke B. TRP Channels in Vision. In: Emir TLR, editor. Neurobiology of TRP Channels. Boca Raton (FL): CRC Press/Taylor & Francis; 2017. Chapter 3. Available from: https://www.ncbi.nlm.nih.gov/books/NBK476112/ doi: 10.4324/9781315152837-3 https://www.ncbi.nlm.nih.gov/books/NBK476112/These studies have led to the identification and characterization of TRP as a light-sensitive and Ca2+-permeable channel (Minke, 2010Montell, 2011Hardie, 2011). Illumination of fly photoreceptors induces a cascade of enzymatic reactions, which result in activation of the light-sensitive TRP channels (Minke, 2010Devary et al., 1987). To function as a reliable light monitor, each stage of the phototransduction cascade needs an efficient mechanism of activation as well as an equally efficient mechanism of termination, ensuring that, at the cessation of the light stimulus, the photoreceptor potential will rapidly reach dark baseline.Failure of response termination at the stage of R activation was designated the prolonged depolarizing after (PDA) potential by Hillman, Hochstein, and Minke (Hillman et al., 1983Minke, 2012). The PDA, like the light coincident receptor potential, arises from light-induced opening of the TRP channels in the plasma membrane. However, in contrast to the light coincident receptor potential, which quickly declines to baseline after the cessation of the light stimulus, the PDA is a depolarization that continues long after light offset (Figure 3.4) (see Hillman et al., 1983Minke, 2012 for reviews). … Thus, massive R to M photoconversion by intense blue light induces a PDA, while M to R photoconversion by intense orange light suppresses the PDA.In summary, the PDA is observed only when a considerable amount of photopigment (>20%) is converted from R to M. The larger the net amount of R to M conversion, the longer the PDA. 

Glyphosate and COVID-19

Glyphosate is a complex topic that may affect many aspects of health other than being a cancer risk or obvious toxin in the sense of a traditional definition of an obvious poison – take cyanide and you die. If we have glyphosate residue in food and also in the air (5) then it may be affecting our health in many unknown ways. (16)

*This post is also available as a tabbed document, 12 pages (longer now, I added to the document), your liver is worth it though – I encourage you to read it. Here are the summary points, included again at the end:

Take home point for severe – COVID-19 patients:

  • Consider testing the urine output for presences of glyphosate residue, test kits can be ordered by clinicians or through a health company, example (greatplains.mymedlab.com/great-plains-tests/glyphosate–2);
  • and if it is present in excess consider adding a heme-oxygenase-1 inhibitor to their care: Heme oxygenase-1 (HO-1) inhibitors include metalloporphyrins (Mps) and imidazole dioxolane derivatives, (13);
  • in addition to following some of the other tips for helping reduce intake of more glyphosate and providing extra methylation support and di-methyl glycine.
  • This post got long so I’m copying the section of possible aids if excessive glyphosate is a concern: Curcumin, Garlic (source of sulfur containing phytonutrients), Vitamin C, Probiotics (fermented foods, yogurt, live active culture pickles), Methyl tetrahydrofolate – (this is the bioactive form of folic acid), Cobalamin – methyl B12, Glutathione (GSH) (an antioxidant that we make for ourselves when healthy, NAC, N-acetyl-cysteine is a precursor, or liposomal glutathione can be better absorbed. Glutathione is typically broken down in the intestines otherwise. Alpha lipoic acid and Superoxide dismutases (SODs) are additional antioxidant support for the body. (26)), Taurine (another amino acid), Epsom salt baths, source of magnesium and sulfate., Manganese containing foods, Eat organically grown foods when possible. (9)
  • Those tips were collected prior to COVID-19 and the theory of heme-oxygenase-1 potentially being defective and acting as an inflammatory peroxidase instead. The garlic, and sulforaphane containing produce can act as Nrf2 promoters which might also lead to increased heme-oxygenase-1 which in normal function acts as an anti-inflammatory enzyme. The citrus and pomegranate polyphenols might also increase Nrf2 and heme-oxygenase-1 production. >>> test urine for glyphosate seems like an essential first step before proceeding with other standard anti-inflammatory treatments other than vitamin C and quercetin – both of which can help reduce an overexpression of Nrf2 (which occurs in a few types of cancer). (30)


Glyphosate use has increased significantly in the last 10-15 years, & may also be in biofuel exhaust.

Glyphosate residue may be in the air we breathe due to its presence in the exhaust created from burning biofuel that had been made from crops grown with Roundup/glyphosate herbicides. (5) Glyphosate residue is found in our foods and the other inert ingredients of Roundup may help it pass through mucus membranes more easily than glyphosate would on its own, so safety testing on glyphosate may not reflect risks of the mixed herbicides like Roundup. (16) (See post, re glyphosate found in humans)

Glyphosate is a man-made chemical that has the same basic structure as an amino acid, building blocks of proteins, and it has been found to possibly be incorporated into protein structure with radioactive tracing. The other ingredients of Roundup increase bioaccumulation of glyphosate in living tissue by helping transport it into tissue. (7) Glyphosate has been found in all vaccine samples that were tested by an independent group, (8), which might be due to vaccine ingredients being cultured on gelatin plates. Gelatin is an animal byproduct derived from collagen.

Glyphosate is a man-made amino acid similar to the natural amino acid Glycine, but has an extra side-chain.

Whether glyphosate is entering our bodies in foods or in the air we breathe, it may be incorporated into our own protein structures. Glyphosate is very similar to the amino acid glycine. An example of glycine’s importance is its role in forming collagen (25% glycine by weight, 1) which is used to form cushioning areas around joints (patients with osteoarthritis have less glycine, and less collagen in their joint tissue than during normal health, 1 ). Glycine is also used in other proteins like enzymes that are used in chemical reactions that lead to other effects on our health.

Glyphosate is similar to a natural, smaller amino acid called glycine but it has a different and larger side chain – a chemical group attached to the glycine like amino acid form. Glycine as a free amino acid has calming, inhibitory effects within the brain and has a small methyl group which can be used to stabilize genes in an ‘off’ mode. (16) Within longer protein structure glycine has an important role in the folding and formation of enzymes or receptors.

Proteins are a string of amino acids joined one to one like beads on a necklace but which then may fold into very complex shapes: Slightly like this toy. The side group on glyphosate is large enough and positioned in a way that it can change the shape and possibly the function of a protein that is made with it instead of glycine. The protein may fold correctly but then the additional chemical group is in the way where the smaller glycine may have left an opening which would be an active spot for a chemical enzyme or receptor – picture a puzzle piece that now has a sticking outward spot instead of an open area.

Puzzle pieces.

A chemical enzyme or receptor has an open area that a matching chemical can fit into. The extra molecular group on glyphosate can interfere with the opening that a smaller glycine would have created in a folded protein. If glycine is being incorporated into protein structure, feasibly it might change the function of an enzyme that included glycine at an active site – changing the shape of the puzzle piece so that it was inactive, the opening too small to accept the normal ligand – matching chemical; or it might change the opening to fit a different chemical potentially changing the function of the enzyme.

Glycine also has a role in cancer prevention because it can donate a methyl group, which is protective against cancer by limiting genes from becoming active if they are not supposed to active. Epigenetic changes can occur in the methylation of genes that don’t change the DNA structure itself but which can be passed from mother to developing fetus and if female, to the fetal ovum – the potential grandchildren. Glyphosate has been found to cause “epigenetic changes through endocrine-mediated mechanisms [54737576798183].” (16)

The extra molecular group in glyphosate is not a methyl donor and therefore would not help preserve necessary methylation of genes that are meant to be in the methylated inactive ‘off’ mode. (9) Unmethylated genes are available to be made into proteins – and we might not want some cells to be making some proteins – cancer cells tend to grow out of control and produce more blood vessels than normal – necessary to support the uncontrolled growth of a tumor.

The glyphosate residue problem of accumulation in our bodies would not be able to be reduced quickly, but might be reduced gradually by avoiding any food that might have Roundup in the production/feed chain, and providing extra glycine as a supplement – to help the body build new collagen and other proteins with the correct amino acid. Some tips that may help reduce glyphosate are included in this post, based on a video by researcher Stephanie Seneff, and which include strategies that were used to treat herd animals who ingested excess glyphosate. A functional medical health professional might be able to provide individualized guidance. (9)

Excerpt describing how replacement of glycine with a different amino acid can change an enzyme from beneficial to harmful: “The title of a paper published in 2000 clearly states the consequences of replacing the first glycine residue with a different amino acid: Re­placement of the distal glycine 139 transforms human heme oxygenase-1 into a peroxidase.”46 The researchers replaced the first glycine residue with several different amino acids, but the one that caused the worst disruption was aspartate. Aspartate is a very good model for how glypho­sate would behave because, like glyphosate, it is considerably larger than glycine & negatively charged. Turning the molecule into a peroxidase would result in the release of redox-active fer­ryl iron (Fe(IV)), a highly oxidized & very dangerous form of iron. 47” – Stephanie Seneff (5)

The change in the enzyme example, heme oxygenase-1 (HO-1) would cause a positive feedback loop – inflammatory chemicals would cause an increase in production of the HO-1 enzyme, which normally would be protective as it is anti-inflammatory, but a switch to it being a peroxidase, the defective theoretically glyphosate or aspartate containing enzyme would instead further increase inflammation which would lead to the positive feedback loop of an increase in production of the normally anti-inflammatory enzyme, which if defective, would again increase inflammation instead, signally further increased production of the potentially defective enzyme, etcetera, creating an out of control increasingly inflammatory condition.

The bad news – this might be why some people are having severe COVID-19 conditions with blood clotting and other circulatory problems and severe inflammation. The good news – there are known heme oxygenase-1 inhibitors used for research purposes and a few types of cancer that have developed ways to use the enzyme.

Heme oxygenase-1 (HO-1) inhibitors include metalloporphyrins (Mps) and imidazole dioxolane derivatives, (13) :

Historically, the first molecules used as non selective HO-1 inhibitors were metalloporphyrins (Mps). The subsequent development of the imidazole-dioxolane derivatives afforded the 1st generation of non-porphyrin based, isozyme selective HO-1 inhibitors.” (13)

Typically anti-inflammatory phytonutrients, such as carnasol (12) found in rosemary and sage which increase the anti-inflammatory Nrf2 pathway, might not be as helpful for a patient whose problem involved glyphosate residue and defective heme oxygenase-1 (HO-1). The normally anti-inflammatory HO-1 enzyme is also increased, induced, by the promotion of the Nrf2 anti-inflammatory pathway, (See excerpt: 10) in addition to being increased by an increase in levels of inflammatory chemicals.

Our results showed that hesperetin and gardenin A dramatically suppressed ROS and IL-5 production through distinct pathways. Interestingly, hesperidin induced HO-1 expression through the transcription factor Nrf2 coupled with the PI3K/AKT or ERK/JNK signaling pathway, consequently downregulating NFAT activity and IL-5 secretion. Likewise, gardenin A induced HO-1 expression and subsequently suppressed IL-5 production by reducing NFAT activity and upregulating PPARγ in EL-4 cells, suggesting that inducing HO-1 expression may inhibit asthmatic inflammation. Altogether, hesperidin and gardenin A have great potential for regulating the asthma-associated immune responses through antioxidant properties.” (10

Clearly more research is needed regarding the role of glyphosate in severe Covid-19 illness. My own successful use of citrus peel flavonoids such as hesperetin for helping the asthma like symptoms of Covid-19 like illness was early in the progression of the illness and I have been avoiding glyphosate containing foods for several years, as well as taking a few grams of supplemental Di-methyl glycine daily during that same time period. Citrus flavonoids have been found beneficial for asthma and some other types of respiratory problems due to activating bitter taste receptors within the lungs. (11)

How to tell if Glyphosate is a problem for a patient? test the urine for residue is one method used in a fatty liver disease study.

Glyphosate animal studies tended to have liver damage as a risk so a research team tested a small group of humans with early stages of liver damage and a group without for the presence of glyphosate in their urine. the people with liver disease (Non-alcoholic Fatty Liver Disease, NAFLD) were found more likely to have higher levels of glyphosate being excreted in their urine samples than the people without liver damage. (19, 20) Test kits for the presence of glyphosate in a urine sample can be ordered by clinicians or through a health company, example: (greatplains.mymedlab.com/great-plains-tests/glyphosate–2)

Non-alcoholic Fatty Liver Disease has become much more common in the last couple decades in the United States and other areas.

Having liver disease whether NAFLD, or more advanced stages, is associated with increased risk for more severe COVID-19 illness. (many search results, COVID19/NAFLD) Having more severe COVID-19 illness may also increase risk for being left with liver damage in survivors. (23)

High fructose corn syrup sweetened products may be part of risk. Fructose is a sugar that is not used by the body for energy except within the liver, similar to calories from alcohol. An excessive intake of calories from alcohol or fruit sugar on a regular basis can then lead to more energy than the liver needs on a daily basis and the excess is made into fat and stored within the liver. If the problem continues, excess fruit sugar or alcohol, than more fat is made and added to the liver storage and the stored fat isn’t used. The liver is not designed to store extra fat. The area become inflamed which leads to fibrosis, scar tissue, and eventually cell death. The liver is where toxins are detoxified and removed from circulation so a non-working liver then leads to an excess of toxins in the blood, and jaundice may become visible as yellowing of the whites of the eyes.

More information about the progression of liver disease is available at the Liver Foundation website: (21).

Limiting fruit sugar and alcohol intake to a moderate one or two servings per day or less is the obvious solution to preventing Non-alcoholic Fatty Liver Disease from occurring. This may not be as obvious as it seems regarding High-Fructose Corn Syrup – which is now being used to sweeten soda and other beverages. Twenty ounce fructose sweetened anything might be four fruit serving equivalents, but without providing the beneficial phytonutrients or fiber of a whole fruit. Anti-inflammatory phytonutrients such as anthocyanins from blueberries, and other red/purple fruits and produce may be protective as well. (many anthocyanin/NAFLD studies) Avoiding glyphosate may also be necessary. (19, 20)

The issue of NAFLD is very significant because if not corrected early, in the fatty stages when the extra energy could be used by the liver, it progresses to the fibrotic scarring and cell death stages, which are generally non-reversible and liver transplant is needed. Treatment during the fibrotic stage may be possible, early diagnosis can help prevent a need for liver transplant, if lifestyle changes and treatment is followed. Non-alcoholic Fatty Liver Disease is being diagnosed in people as young as age 15 more commonly now in the U.S.. Fatty Liver Disease used to be a disease linked to decades of drinking too much alcohol – in older people. There are waiting lists for organ transplant – ideally, better to take care of your own liver.

Progression between the stages was thought to generally take a couple decades – age 15, would be possibly needing a liver transplant by age 35, however that no longer seems to be true either. Some patients are reaching the more severe liver disease within just a couple years from initial diagnosis of NAFLD. Other risk factors for NAFLD include “obesity, type 2 diabetes, hypertension, and hyperlipidemia,” also “obstructive sleep apnea, polycystic ovary syndrome, gout, and hypothyroidism.” (22) If glyphosate is part of the risk, than the 15 year old could have been consuming glyphosate residue for 15 years.

If glyphosate is interfering with re-methylation, that also could be a risk factor for risk of developing NAFLD: “In summary, advanced NAFLD is associated with multiple alterations in methionine metabolism that lead to hepatic methionine deficiency and homocysteine elevation, mainly as a result of impaired remethylation of homocysteine to methionine.” (24) Methionine is also an amino acid like glycine that can be a methyl donor – when it has a methyl group available to donate.

Dietary nutrients or phytonutrients mentioned by Stephanie Seneff in a video about glyphosate, and reducing negative impact of it include:

  • Curcumin
  • Garlic (source of sulfur containing phytonutrients)
  • Vitamin C
  • Probiotics (fermented foods, yogurt, live active culture pickles)
  • Methyl tetrahydrofolate – (this is the bioactive form of folic acid)
  • Cobalamin – methyl B12
  • Glutathione (GSH) (an antioxidant that we make for ourselves when healthy, NAC, N-acetyl-cysteine is a precursor, or liposomal glutathione can be better absorbed. Glutathione is typically broken down in the intestines otherwise. Alpha lipoic acid and Superoxide dismutases (SODs) are additional antioxidant support for the body. (26))
  • Taurine (another amino acid)
  • Epsom salt baths, source of magnesium and sulfate.
  • Manganese containing foods,
  • Eat organically grown foods when possible.
  • (9)

Toxicity risk is assessed based on old standards of overt lethality, cancer risk, and teratogen – birth defect risk.

Toxicity risk for new chemicals still focuses on the overt risk of how much is too much – how much will cause cancer, visible or otherwise obvious birth defects, or will lead to death within a short time span? Toxicity risk would not be checking whether the function of normal enzymes still worked, or whether collagen was still being made in the same way.

Modern man-made chemicals may be affecting health in less obvious ways. Endocrine disrupting chemicals have been studied more extensively than the question of the similarity of glycine and glyphosate. Endocrine disrupting chemicals can affect the balance of female/male hormones and possibly affect development of infants during a woman’s pregnancy and may be affecting health throughout the lifespan in other ways – at very low doses. Hormones affect the body in very tiny amounts – not at amounts that would cause cancer or lead to death in a short amount of time. Glyphosate containing herbicides have been found to have androgen like effects, male hormone, and effects on reproductive health. (3, 4)

Many modern chemicals commonly used for agriculture and other purposes are negatively impacting soil health. We not only are losing bees from the wilderness and agriculture, we have lost earthworms from the soil. (25)

Glyphosate in biofuel & rates of severe Covid-19 illness.

Severe Covid-19 illness has had many odd symptoms that are not like other respiratory illnesses. The use of glyphosate herbicides for food and biofuel production in the US and in some other nations has greatly increased in the last decade or two. (16) SARS-CoV-1 was a smaller outbreak and it occurred in 2003. “Two-thirds of the total volume of glyphosate applied in the U.S. from 1974 to 2014 has been sprayed in just the last 10 years.” (16)

Use of glyphosate herbicides has also increased significantly due to use as a desiccant in the final ripening stages of other crops such as small grains, edible beans, and other crops. The herbicide is added in the last few days before harvest to defoliate the plant and increase harvest yield. It also may greatly increase residue on the harvested food.

The average rate per crop year [US]—the single most important indicator of the intensity of glyphosate use—rose even more dramatically, from 0.47 kg/hectare in 1993 to 2.08 kg/hectare in 2012 (4.4-fold).” (16)

Initially application of the herbicide for genetically modified crops (GMO) was once or twice per growing season but there was an increase in weeds that mutated to be able to resist glyphosate and then more of the herbicide and other herbicides were needed – and this losing race against mutations in weeds is continuing. (16, 32) The method to make genetically modified crops leads to an increased risk for similar mutations as the genes involved are added to the crop plant in a mobile gene containing plasmid – likely then fairly mobile for moving into a nearby weed species. (17)

As use of glyphosate herbicides has increased in the US and residue has increased the Environmental Protection Agency has increased the amount of residue allowed to be present on the harvested product. (16)

Still, a growing body of literature points to possible, adverse environmental, ecological, and human health consequences following exposure to glyphosate and/or AMPA, both alone [54] and in combination with ingestion of GE proteins (e.g., EPSPS, Bt endotoxins) [55]. Environmental studies encompass possible glyphosate impacts on soil microbial communities and earthworms [5658], monarch butterflies [59], crustaceans [60], and honeybees [61].

(Benbrook, 2016, 16)

Studies assessing possible risks to vertebrates and humans include evidence of rising residue levels in soybeans [6263], cancer risk [64], and risk of a variety of other potential adverse impacts on development, the liver or kidney, or metabolic processes [54556580].”

(Benbrook, 2016, 16)

The patent for glyphosate herbicides ended in the year 2000 and has reduced price and increased the number of producers. Chinese producers now make about 40% of the world supply of glyphosate herbicides but primarily export it rather than it being used in China on crops there as the genetically modified seeds resistant to glyphosate are not generally grown there. (16)

It is easier to pollute than it is to clean up pollution. Lead gasoline exhaust harmed health and was eventually regulated to be prevented from being added to gasoline. Urban areas still have lead contaminated soil around highways and industrial areas. Lead exposure may have added to an increase in a variety of health and social issues.

Glyphosate may be present in biofuel made from plant material that was grown with Roundup or other glyphosate containing herbicides or biomatter that was exposed to glyphosate containing herbicides from it spreading to the nearby environment. It does runoff into water and collects in soil. It may be used as an herbicide for aquatic plants but it is not ideal for that use as aquatic species are even more at risk to be harmed by the combination of the glyphosate and other ingredients that can carry it through mucus membranes more easily.

Removing glyphosate residue from the biofuel produced with glyphosate containing plant material might be possible – but ending use of glyphosate herbicides for all of our agricultural crops and other environmental uses might be better for long term health of soil microbes, aquatic species, and other species, such as humans.

Graphic showing rates of COVID19 by city/county in the state of Massachusetts – April 27 2020. The rate for Chelsea, Massachusetts is the worst for the state at that point in time (6) – what might be different there? – they have a biodiesel production plant. More recent graphic showing the U.S. rate of COVID-19 cases and deaths: (18), this is not contained.

If biofuel production and its use, due to exhaust containing glyphosate residue, is part of the severe Covid19 risk – then US and Brazil are by and far leaders in production of biofuel, (14) , and US crops use a lot of Roundup. (14) I’m not sure about Brazil Roundup use prior to 2018 but at that time the nation suspended use, pending further safety studies of glyphosate containing herbicides, and then the ban was over-ruled by a higher level court, citing risk to the Brazilian economy as soy growers depend on glyphosate herbicides. (15)

The death rate in Brazil since the start of Covid19 epidemic to present – seasonality may also play a role was less severe than in the U.S.. Vitamin D/sunshine is protective against an excess inflammatory response. Brazil’s Covid rate has been increasing with a current rate of 25153 cases per million population, 7.5% are being treated, and 0.2% are in Intensive Care Units (ICU): (coronatracker/Brazil) The United States Covid rate has also been increasing with a rate of 26582 cases per million population, 32.3% are being treated, and 0.2% are in ICU: (coronatracker/United-States). Data accessed on Oct. 24, 2020, coronatracker.

China, for comparison, a country mentioned earlier that doesn’t use much glyphosate herbicides has only 60 cases per million population currently. (coronatracker/China). Data accessed on Oct. 25, 2020. Less glyphosate is also used in European countries than in the United States. (31)

Non-Hodgkin’s Lymphoma has been linked to Roundup use, and some nations have banned, or plan a phaseout and eventual ban of the use of glyphosate herbicides within a few years. A list of cities, states, and nations with some regulations or ban of the use of glyphosate containing herbicides is available here: (carlsonattorneys). A list of nations with a ban or planned ban is available here: (sustainablepulse). The herbicide has also been linked to bee colony collapse (death of agricultural and wild bee colonies) along with a few other pesticides/herbicides.

aside/ burning plant material that could be composted as used as fertilizer is still removing phosphorus from the growth renewable cycle that was traditional and worked. Biofuel also somewhat energy intensive to make. Humans need to burn less, not just switch what we are burning

Possible aid in urban areas – Pomegranate

Pomegranate juice and nutrients in the peel of pomegranate may help the body remove air pollution nanoparticles by promoting clumping of the tiny particles into a cluster large enough for the white blood cells of our normal body defense system to be able remove, and also helps reduce oxidative stress – inflammatory chemicals. Glutathione, an antioxidant mentioned earlier, is one of our body’s ways of reducing oxidative stress chemicals. “even very low amounts of pomegranate juice…protects the generated nitric oxide (NO) against its oxidative destruction (via an inhibition of a superoxide anion-mediated disappearance of NO, leading to..[more].. bioavailability of NO) (29)

Some background info on glyphosate theory regarding chronic illness risk

Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance – Samsel & Seneff (27)

More on this topic is in the tabbed document.

Different ‘hyperinflammatory’ explanation for COVID-19, and summary points about glyphosate/CoV theory:

A potential explanation for the hyperinflammatory (like toxic shock/septic shock) syndrome in severe COVID19 and MIS-C in children in a small percentage may be due to a genetic susceptibility. More positively T-cell immunity from exposure to over coronavirus may be protective. (28)

Use of anti-inflammatories is suggested as a possible solution for the hyperinflammatory reaction, (28), – which is what high dose Intravenous Vitamin C Infusion proponents have been using and recommending all along. (March 26, 2020 post) Just taking very large doses of vitamin C would not be the same, it goes straight through if taken in excess by mouth. Liposomal forms of vitamins are encased in a fat soluble carrier which can increase absorption more. However – if excessive glyphosate residue is part of the hyper-inflammatory cycle, with the defective heme oxygenase-1 enzyme instead of being anti-inflammatory and instead acting as an inflammatory peroxidase, then standard anti-inflammatory treatment may not help as much as expected and some may even be adding to the problem by inducing more production of the defective heme-oxygenase-1 enzyme.

Take home point for severe – COVID-19 patients:

  • Consider testing the urine output for presences of glyphosate residue, test kits can be ordered by clinicians or through a health company, example (greatplains.mymedlab.com/great-plains-tests/glyphosate–2) ;
  • and if it is present in excess consider adding a heme-oxygenase-1 inhibitor to their care: Heme oxygenase-1 (HO-1) inhibitors include metalloporphyrins (Mps) and imidazole dioxolane derivatives, (13);
  • in addition to following some of the other tips for helping reduce intake of more glyphosate and providing extra methylation support and di-methyl glycine.
  • This post got long so I’m copying the section of possible aids if excessive glyphosate is a concern: Curcumin, Garlic (source of sulfur containing phytonutrients), Vitamin C, Probiotics (fermented foods, yogurt, live active culture pickles), Methyl tetrahydrofolate – (this is the bioactive form of folic acid), Cobalamin – methyl B12, Glutathione (GSH) (an antioxidant that we make for ourselves when healthy, NAC, N-acetyl-cysteine is a precursor, or liposomal glutathione can be better absorbed. Glutathione is typically broken down in the intestines otherwise. Alpha lipoic acid and Superoxide dismutases (SODs) are additional antioxidant support for the body. (26)), Taurine (another amino acid), Epsom salt baths, source of magnesium and sulfate., Manganese containing foods, Eat organically grown foods when possible. (9)
  • Those tips were collected prior to COVID-19 and the theory of heme-oxygenase-1 potentially being defective and acting as an inflammatory peroxidase instead. The garlic, and sulforaphane containing produce can act as Nrf2 promoters which might also lead to increased heme-oxygenase-1 which in normal function acts as an anti-inflammatory enzyme. The citrus and pomegranate polyphenols might also increase Nrf2 and heme-oxygenase-1 production. >>> test urine for glyphosate seems like an essential first step before proceeding with other standard anti-inflammatory treatments other than vitamin C and quercetin – both of which can help reduce an overexpression of Nrf2 (which occurs in a few types of cancer). (30)

Your liver may thank you for thinking about the risks of glyphosate to human health, and to the other species we share the planet with. Humans created a fake amino acid – which can be incorporated into protein as if it was an amino acid, but which functions far differently within the protein structure.

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

Reference List

  1. de Paz-Lugo P, Lupiáñez JA, Meléndez-Hevia E. High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids. 2018;50(10):1357-1365. doi:10.1007/s00726-018-2611-x https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153947/
  2. The Herbicide Roundup found more dangerous than Glyphosate alone. Oct 17, 2016, effectiveselfcare.info, https://effectiveselfcare.info/2016/10/17/the-herbicide-round-up-found-more-dangerous-than-glyphosate-alone/
  3. The Ramazzini Institute, Global glyphosate study: Pilot phase shows reproductive and developmental effects at safe dose. https://glyphosatestudy.org/press-release/global-glyphosate-study-pilot-phase-shows-reproductive-and-developmental-effects-at-safe-dose/
  4. The Ramazzini Institute, Global Glyphosate Study Pilot Phase Shows Adverse Health Effects at ‘Safe’ Doses. May 16,2018, https://glyphosatestudy.org/press-release/global-glyphosate-study-pilot-phase-shows-adverse-health-effects-at-safe-doses/
  5. Seneff S., Air Pollution, Biodiesel, Glyphosate and Covid-19. The Weston A. Price Foundation https://www.westonaprice.org/health-topics/air-pollution-biodiesel-glyphosate-and-covid-19/
  6. Tieskens KF, Celsi RJ, Confirmed Covid-19 Infection Rate per 10,000 Inhabitants (Massachusetts), updated April 27, Graphic used in Seneff S., Air Pollution, Biodiesel, Glyphosate and Covid-19. https://westonaprice.org/wp-content/uploads/Summer2020Seneff4.jpg#.X4b8zUMFK6B.link
  7. Contardo V, Klingelmann JE, Wiegand C. Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Env Pollution, 2009;157(1), Jan 2009, Pages 57-63 https://www.sciencedirect.com/science/article/abs/pii/S0269749108004053#!
  8. Glyphosate in Childhood Vaccines: Moms & Scientists Demand FDA & CDC Test Vaccines for Glyphosate. Moms across America, https://www.momsacrossamerica.com/glyphosate_in_childhood_vaccines
  9. Depew J. Glyphosate was found in vaccines; and tips for reducing dietary exposure. Sept. 16, 2016, effectiveselfcare.info https://effectiveselfcare.info/2016/09/16/glyphosate-was-found-in-vaccines-and-tips-for-reducing-dietary-exposure/
  10. Citrus flavonoids suppress IL-5 and ROS through distinct pathways in PMA/ionomycin-induced EL-4 cells https://pubmed.ncbi.nlm.nih.gov/31932824/ 
  11. Nayak AP, Shah SD, Michael JV, Deshpande DA. Bitter Taste Receptors for Asthma Therapeutics. Front Physiol. 2019;10:884. Published 2019 Jul 16. doi:10.3389/fphys.2019.00884 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647873/ 
  12. Martin D, Rojo AI, Salinas M, et al., Regulation of Heme Oxygenase-1 Expression through the Phosphatidylinositol 3-Kinase/Akt Pathway and the Nrf2 Transcription Factor in Response to the Antioxidant Phytochemical Carnosol*. J Bio Chem. 2004;279:10, pp. 8919–8929, 2004 https://jbc.org/content/279/10/8919.full.pdf
  13. Pittalà V, Salerno L, Romeo G, Modica MN, Siracusa MA. A focus on heme oxygenase-1 (HO-1) inhibitors. Curr Med Chem. 2013;20(30):3711-32. doi: 10.2174/0929867311320300003. PMID: 23746277. https://pubmed.ncbi.nlm.nih.gov/23746277/
  14. Leading countries based on biofuel production in 2019 (in petajoules)*, statista.com https://statista.com/statistics/274168/biofuel-production-in-leading-countries-in-oil-equivalent/
  15. Reuters staff, Brazil court overturns ban on weed-killer glyphosate. Sept. 3, 2018, reuters.com, https://www.reuters.com/article/us-brazil-agriculture/brazil-court-overturns-ban-on-weed-killer-glyphosate-idUSKCN1LJ1D7
  16. Benbrook CM, Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28, 3 (2016). https://doi.org/10.1186/s12302-016-0070-0
    https://enveurope.springeropen.com/articles/10.1186/s12302-016-0070-0
  17. Gene Transfer, Genetic Engineering of Plants: Agricultural Research Opportunities and Policy Concerns. National Research Council (US) Board on Agriculture. Washington (DC): National Academies Press (US); 1984. https://www.ncbi.nlm.nih.gov/books/NBK216398/
  18. Graphic showing the US rate of cases and deaths due to COVID-19. https://twitter.com/EricTopol/status/1320142330611941376?s=20
  19. Debra Kamin, It’s in the Weeds: Herbicide Linked to Human Liver Disease. May 14, 2019, U.C. San Diego, https://health.ucsd.edu/news/releases/Pages/2019-05-14-herbicide-linked-to-human-liver-disease.aspx
  20. Mills PJ, Caussy C, Loomba R., Glyphosate Excretion is Associated With Steatohepatitis and Advanced Liver Fibrosis in Patients With Fatty Liver Disease. Clin Gastroenterology and Hepatology, 2020;18:3 March 2020, Pages 741-743 https://www.sciencedirect.com/science/article/abs/pii/S1542356519303611
  21. The Progression of Liver Disease, liverfoundation.org, https://liverfoundation.org/for-patients/about-the-liver/the-progression-of-liver-disease/#1503432878616-a25d5b59-3a75
  22. Laura Joszt, NASH Has Gone Under the Radar, but It Is the “Elephant in the Room,” Panelists Say. Nov 1, 2019 https://www.ajmc.com/view/nash-has-gone-under-the-radar-but-it-is-the-elephant-in-the-room-panelists-say
  23. Ping Lei, Lan Zhang, Ping Han, et al., Liver injury in patients with COVID-19: clinical profiles, CT findings, the correlation of the severity with liver injury. Hepatol Int14, 733–742 (2020). https://doi.org/10.1007/s12072-020-10087-1 https://link.springer.com/article/10.1007/s12072-020-10087-1
  24. Pacana T, Cazanave S, Verdianelli A, et al. Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease. PLoS One. 2015;10(8):e0136822. Published 2015 Aug 31. doi:10.1371/journal.pone.0136822 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556375/
  25. Prof. Dr. Ralf Otterpohl Healing the Soil, klinghardtinstitute.com, https://klinghardtinstitute.com/environment/healing-the-soil/
  26. Samuel Yanuck, Module 2, video 1, Hypoxia and Inflammatory Cytokines, cogenceimmunology.com https://cogenceimmunology.com/
  27. Samsel A, Seneff S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip Toxicol. 2013 Dec;6(4):159-84. doi: 10.2478/intox-2013-0026. PMID: 24678255; PMCID: PMC3945755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945755/
  28. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation Mary Hongying Cheng, She Zhang, Rebecca A. Porritt, Magali Noval Rivas, Lisa Paschold, Edith Willscher, Mascha Binder, Moshe Arditi, Ivet Bahar Proceedings of the National Academy of Sciences Oct 2020, 117 (41) 25254-25262; DOI: 10.1073/pnas.2010722117 https://www.pnas.org/content/117/41/25254 via Tweet with graphics https://twitter.com/EricTopol/status/1310667448278945792?s=20
  29. Wang D, Özen C, Abu-Reidah IM, et al., Vasculoprotective Effects of Pomegranate (Punica granatum L.) Pharmacol., 24 May 2018 | https://doi.org/10.3389/fphar.2018.00544 https://www.frontiersin.org/articles/10.3389/fphar.2018.00544/full
  30. Mostafavi-Pour Z, Ramezani F, Keshavarzi F, Samadi N. The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells. Oncol Lett. 2017;13(3):1965-1973. doi:10.3892/ol.2017.5619 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403368/
  31. Antier C, Kudsk P, Reboud X, et al., Glyphosate Use in the European Agricultural Sector and a Framework for Its Further Monitoring. Sustainability, 15 July 2020 https://www.dropbox.com/s/q5ooe291m7d6inj/sustainability-12-05682-v3.pdf?dl=0
  32. Brunharo CACG, Morran S, Martin K, Moretti ML, Hanson BD. EPSPS duplication and mutation involved in glyphosate resistance in the allotetraploid weed species Poa annua L. Pest Manag Sci. 2019 Jun;75(6):1663-1670. doi: 10.1002/ps.5284. Epub 2019 Jan 28. PMID: 30506940. https://pubmed.ncbi.nlm.nih.gov/30506940/