Pumpkin seeds – rich in zinc

Pumpkin seed kernels, raw, unsalted.

Pumpkin seed kernels are a good source of protein, essential fats, fiber, magnesium and other vitamins and minerals – and a great source of zinc which may be lacking in vegetarian or vegan diets. (Pumpkin Seeds – Benefits, nutrition and dietary tips.) (Other vegetarian sources of zinc.)

Work is progressing on the development of pumpkin seed flour for use as a food thickening substance for use in gravies or other sauces or stews. It would increase the protein, essential fatty acids, and other trace nutrient content of the resulting foods. (10) The use of pumpkin seeds in the diet may also prove to be protective against cancer and liver or kidney injury; and as a good source of antioxidants such as carotenoids (vitamin A family of nutrients) the use of pumpkin seeds in the diet may prove to be helpful against many conditions that involve excess oxidative stress. (4, 5, 6, 7, 8, 9) They are also a source of vitamin E (tocopherols), other phytosterols, and linoleic acid, a beneficial polyunsaturated fat. Pumpkin seed oil may be helpful in wound healing. (15) Pumpkin seeds are also a good source of phospholipids, (16), which are important for skin and membrane health.

Pumpkins are considered a drought tolerant plant for gardeners. Adequate water is needed to grow larger pumpkin and squash but the vines can survive limited water conditions. The seeds of other summer and winter squash are also nutrient rich and also may be more drought tolerant plants. (11, 12) Enough but not too much water at the right times are critical. Flooding or severe drought may both harm the garden yield. Mulching and drip irrigation or other watering methods applied at optimal stages of growth can be the water thrifty solution for best yield. (13, 14)

The seeds of butternut squash and some types of winter squash can be collected when trimming the squash and later toasted and eaten as a crunchy nutritious snack. India grocery markets may also have shelled squash seeds available for sale. They are slightly smaller and paler in color than the shelled pumpkin kernels in the image above.

Magnesium is one of the beneficial nutrients found in pumpkin seeds. It is a mineral that is needed in greater quantity during pregnancy and high blood pressure/hypertension can be a symptom of deficiency. Preeclampsia and the more severe eclampsia are complications characterized by high blood pressure and edema/swelling that can occur during pregnancy. Toxins collect in the excess fluid buildup and can risk a brain condition similar to hypertension encephalopathy in the more severe eclampsia. Seizure activity can result and death for the woman and expected infant are risks. Magnesium is used as an intravenous or intramuscular injection to reduce risk of the seizures during eclampsia. The mineral seems to help protect the blood brain barrier and reduce swelling in the brain during eclampsia. It’s role as an antioxidant to reduce free radical toxins may be involved but the exact mechanism for its benefit in eclampsia is not known. (2, page 139)

More information about preclampsia is available in a previous post, and more information about food sources and supplement sources of magnesium is also available in a previous post.

I have several writing projects in draft mode however they overlap – pumpkin seeds, a good source of magnesium and zinc, helped my previous prenatal clients who had a history of preeclampsia or high blood pressure in a previous pregnancy prevent a reocurrence of the problem. Why? Possibly because of the magnesium and other beneficial nutrients which could be protecting the blood brain barrier and might then also be helpful for preventing harm to oligodendrocytes and protect against demyelination – a risk that can occur with some types of encephalopathy (3).

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827242/Megan Ware, What are the health benefits of pumpkin seeds?, July 24, 2018, https://www.medicalnewstoday.com/articles/303864.php
  2. Mehmet Kaya, Bulent Ahishali, Chapter 9: The role of magnesium in edema and blood brain barrier disruption, page 139, in the book edited by Robert Vink, Mihai Nechifor, Magnesium in the Central Nervous System, University of Adelaide Press, 2011, adelaide.edu.au, free ebook pdf, https://www.adelaide.edu.au/press/titles/magnesium/magnesium-ebook.pdf  (2
  3. S. Love, Demyelinating Diseases, J Clin Pathol. 2006 Nov; 59(11): 1151–1159.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1860500/ (3)
  4. Scientific Studies collection on a commercial website by Pepo Farms, https://pepofarms.com.au/scientificstudies/ (4) which includes:
  5. M. Gossell-Williams, A. Davis, N. O’Connor, Inhibition of Testosterone-Induced Hyperplasia of the Prostate of Sprague-Dawley Rats by Pumpkin Seed Oil. Jun 2006, Vol. 9, No. 2 : 284 -286. 
  6. C. Z. Nkosi, A. R. Opoku, S. E. Terblanche, Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-Induced liver injury in low-protein fed rats.
  7. Fahim AT Abd-el Fattah AA Agha AM Gad MZ
    Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats.
    In: Pharmacol Res (1995 Jan) 31(1):73-9 ISSN: 1043-6618
  8. Suphakarn VS Yarnnon C Ngunboonsri P, The effect of pumpkin seeds on oxalcrystalluria and urinary compositions of children in hyperendemic area. In: Am J Clin Nutr (1987 Jan) 45(1):115-21 ISSN: 0002-9165
  9. Matus Z Molnar P Szabo LG [Main carotenoids in pressed seeds (Cucurbitae semen) of oil pumpkin (Cucurbita pepo convar. pepo var. styriaca)] Olajtok (Cucurbita pepo convar. pepo var. styriaca) magjabol nyert presmaradek ossz-karotinoid-tartalmanak es karotinoid-osszetetelenek meghatarozasa. In: Acta Pharm Hung (1993 Sep) 63(5):247-56 ISSN: 0001-6659 (Published in Hungarian)  * The main carotenoids included per the Pepo Farms site: “The main components of the press-residue were lutein [3,3′-dihydroxy-alpha-carotene = (3R,3’R,6’R)-beta,epsilon-carotene-3,3′-diol; 52.5%] and beta- carotene (beta,epsilon-carotene; 10.1%). In addition to the above- mentioned pigments it was successful to reveal the presence of violaxanthin, luteoxanthin, auroxanthin epimers, lutein epoxide, flavoxanthin, chrysanthemaxanthin, 9(9′)-cis-lutein, 13(13′)-cis- lutein, 15-cis-lutein (central-cis)-lutein, alpha-cryptoxanthin, beta- cryptoxanthin and alpha-carotene (beta,epsilon-carotene) in small quantities.”  (4)
  10. Initial food technology research on the preparation and use of pumpkin seed flour for use in more nutritious gravy type sauces: Sharma G, Lakhawat S., Development, Quality Evaluation and Acceptability of Pumpkin Seed Flour Incorporated in Gravy. J Nutr Food Sci 7:613. doi: 10.4172/2155-9600.1000613      https://www.omicsonline.org/open-access/development-quality-evaluation-and-acceptability-of-pumpkin-seed-flourincorporated-in-gravy-2155-9600-1000613.php?aid=91345
  11. EllenB, Growing Drought Tolerant Vegetables, June 9, 2009, ThriftyFun.com, https://www.thriftyfun.com/Growing-Drought-Tolerant-Vegetables.html (11)
  12. Troy Scott, Drought Tolerant Vegetables for your Garden, July 9 2018, HeavenlyGreens.com http://www.heavenlygreens.com/blog/drought-tolerant-vegetables-for-your-garden (12)
  13. Joan Morris, Vegetable Gardening in a Drought, mercurynews.com, April 1, 2015,  https://www.mercurynews.com/2015/04/01/vegetable-gardening-in-a-drought/ (13)
  14. Extension Utah State University, Vegetable Irrigation: Squash and Pumpkin, Horticulture/Vegetables/2015-4,   https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1744&context=extension_curall (14)
  15. Bardaa S, Ben Halima N, Aloui F, et al. Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids in Health and Disease. 2016;15:73. doi:10.1186/s12944-016-0237-0. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827242/ (15)
  16. Zh.Y. Petkova, G.A. Antova, Changes in the composition of pumpkin seeds (Cucurbita moschata) during development and maturation. Grassas Y Aceites, 66 (1), Jan–March 2015, e058. http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/viewFile/1523/1658 (16)

Why care about demyelination?

We need to care about demyelination as a society because it may be a factor underlying many conditions that have been occurring at increasing rates. The high cost of health care is not just due to the cost of individual medications or the price of hospitalization but is due to the additive cost of increased numbers of individuals needing care. Autism care alone is estimated to likely reach $500 billion by 2025 for care in the U.S. alone, (link), demyelination or disordered myelin formation is thought to be involved. Our food supply may provide calories but it may no longer be supporting health due to imbalance in some nutrients and lack of sufficient amounts of other nutrients – in addition to personal choices for some people leaning toward convenient and tasty foods that provide very few nutrients besides calories.

The other reason to care about demyelination as a society is because the early symptoms can occur for years without clear reasons and may disrupt relationships or the ability to hold a job – personality changes including anxiety and anger, paranoia and a short temper – problems with impulse control and the ability to follow through on planned actions or with communication and the ability to tell the truth instead of substituting other statements that may seem illogical and obviously far from the truth. Problems with impulse control and a tendency toward mood problems may also include an increased risk for suicide or self injury or violence towards others.

The medical research is complex and I haven’t seen all the loose threads together yet, so I will summarize my summary points in a more concise list here and am working on a more organized document elsewhere. This list combines my tips from the previous post with the work of the other summary article (22) — I was also given the link to another summary article which also has tips which I have not incorporated here. It provides an excellent overview about myelin production and function –selfhacked/myelin – what I and the authors of (22) and {selfhacked} have in common is that we all got sick and sought information about regaining our health for ourselves and are sharing the information in case it might help others.

My personal goal is to not become paralyzed (post: ALS & CBD receptors), number of clicks on a website is not something I pay attention to. The loose threads that I’ve woven together in this series of posts which are not included in the excellent selfhacked article are that a) many of the herbs or phytonutrients found helpful for myelin regeneration are Nrf2 promoting which is also important for myelin regeneration and/or reducing oxidative stress that may lead to more degeneration of myelin. b) Foods that are good for promoting Nrf2 often are also good sources of cannabinoids or phospholipids which can be protective. c) And preventing excessive cell death or excess intracellular calcium may decrease the excess production of cytokines by decreasing release of cannabinoids from cell membrane storage and their breakdown into arachidonic acid and eventual transformation into cytokines and other inflammatory chemicals.}: 

Strategies to help prevent the breakdown of myelin or help promote regeneration of myelin:

{In the past at different points in time, I personally have experienced and improved with supplementation or diet changes physical and mental symptoms of vitamin B1, B5, B6, folate and B12 deficiencies; iodine, magnesium, calcium and zinc deficiencies; vitamin/hormone D and calcium excess at a different stage of health;  cannabinoid/phospholipid deficiency; inadequate protein and general malnutrition due to the zinc deficiency which can greatly reduce appetite at one stage and due to severe bowel mal-absorption more recently; omega 3 fatty acid/omega 6 fatty acid imbalance; and also lack of sleep/melatonin and lack of oxygen/excess toxins in the air; health requires all of the nutrients and adequate oxygen, exercise, sleep and stress coping.}

  1. Vitamin B1, thiamin deficiency, chronic, severe – Wernicke’s encephalopathy may be more of a risk for severe alcoholics and people with anorexia – severe lack of appetite or the eating disorder anorexia nervosa.
  2. Vitamin B12 deficiency – may be more of a risk for people with low stomach acidity, due to older age or chronic use of calcium type antacids; or due to genetic reasons limiting production of Intrinsic Factor; or due to a vegan diet without supplementation of vitamin B12 or inclusion of Nutritional yeast flakes in the diet.
  3. Zinc deficiency (22or copper  excess (link).
  4. Adequate but not excessive lithium may increase myelin production. (22)
  5. Adequate but not excessive iron intake is needed for production of myelin.
  6. Magnesium deficiency or poor intestinal absorption of magnesium, or lack of adequate protein and phospholipids in the diet for the body to be able to store magnesium in the normal manner within the intracellular fluid.
  7. Inadequate calcium or vitamin D can be a factor but excessive intake of either can also be a factor in cell breakdown and risk of demyelination. If taking vitamin D as a supplement the vitamin D3 form may be most bioactive and taking vitamin K2 with it may help with myelin production (22) and protect against osteoporosis. Green leafy vegetables are good sources of vitamin K.
  8. Adequate intake of cholesterol is needed as a building block for our own production of vitamin D and other steroid hormones and as a building block for myelin. (22) Pregnenolone is a steroid hormone precursor that may benefit some people when used as a supplement. It and other steroid hormones are involved in signaling increased production of myelin. Testosterone insufficiency may also negatively affect myelin production. (22)
  9. Excessive intake of free glutamate or aspartate – excitatory amino acids that are commonly used as flavoring or sweetening agents in foods or may occur naturally in fermented foods or alcoholic beverages.
  10. Adequate protein is needed to support a variety of body functions in addition to supporting magnesium levels. Uridine is a nucleotide base (part of DNA that is a combination of a type of sugar and an amino acid) that is also is involved in energy metabolism, fasting occasionally may increase our own production (more info). Insufficient amounts may negatively affect myelin production and use as a supplement may help some people. (22)
  11. Insufficient calories to provide the body enough glucose to support mitochondrial health. They can use protein or fats for energy but it shifts the metabolism more towards oxidative stress.
  12. Occasional fasting and/or a low carbohydrate diet may help promote autophagy due to increased use of ketones for energy (22) but may cause health problems due to excess oxidative stress or an increased burden of nitrogen waste removal for the kidneys when followed long term.
  13. Lack of antioxidants due to lack of Nrf2 within the body to promote our own production of antioxidants internally; and/or lack of antioxidants within the diet, including vitamin C, (22), would decrease our ability to detoxify the reactive oxidative chemicals produced during normal metabolism or which are produced at increased rates when protein or fats are being used for energy instead of glucose.
  14. Use of the herb ashwagandha or Gingko biloba (22) may help protect against oxidative stress and protect against demyelination by promoting Nrf2. (ashwagandha & Nrf2) (an overview of Nrf2 metabolism, its potential benefits for conditions such as Multiple sclerosis, and Gingko biloba and pomegranate are mentioned as promoters of Nrf2: nutricology/newsletter, see first article) (other Nrf2 promoting phytonutrients/foods and menu ideas: G10: Nrf2 Promoting Foods.) Flavonoids are one of the groups of phytonutrients that helps promote Nrf2; and also may help protect myelin production. (22) Medicinal mushrooms, including Hericium Erinaceus, Lion’s Mane Mushroom,(22), may also help protect myelin production and prevent breakdown by reducing oxidative stress (link) and promoting Nrf2. (link)
  15. Having a healthy balance of omega 3 fatty acids and omega 6 fatty acids in the diet helps reduce risk of inflammation/oxidative stress and also helps us build healthy membranes which are necessary to control flow of minerals and other chemicals from the exterior to interior of cells and organelles such as the mitochondria.
  16. Inadequate iodine for healthy thyroid hormone production, (22); may be a combined problem of excess presence of bromide, fluoride and perchlorate in the diet or environment.
  17. Lack of oxygen due to poor air quality, or smoking, or health problems causing inadequate breathing function. Emotional or physical stress may also increase the need for oxygen or increase the tendency to hold our breath; Take ten deep breaths and think before you speak is good advice for any emotionally stressful situation because oxygen is needed to think rationally and we tend to hold our breath when we are upset.
  18. Avoid extreme physical and emotional stress.
  19. Avoid toxins.
  20. Get adequate sleep at night, and a brief nap during the day may be beneficial for some people. Melatonin helps promote myelin production and inadequate sleep and having lights on at night can disrupt our production of melatonin. (22)
  21. Adequate exercise (22) and stretching regularly helps move nutrients throughout the body and remove toxins in the lymphatic fluid for further detoxification and eventual removal from the body.
  22. Wear a helmet for any activity that may cause head trauma and avoid sports which may cause frequent closed head trauma and especially when helmets are not used (sorry soccer, football, hockey, (link), and boxing fans).
  23. Adequate phospholipid and other phosphonutrients or cannabinoids may be necessary to include from external sources if genetic differences or other health problems or age interferes with the body’s internal production capability. Dark cocoa products, cardamom powder, pomegranate and pumpkin seeds are a few legal dietary sources.
  24. Use of ibuprofen and/or ginger (approximately 1/2 teaspoon per day) may help prevent breakdown of our body’s supply of cannabinoids, breakdown of which may then lead to increased breakdown of cells and may then lead to increased degeneration of myelin.
  25. Lack of any B vitamins or genetic differences in the ability to remethylate folate and vitamin B12 may disrupt the ability of mitochondria to generate usable energy from glucose or proteins and fats, and may reduce production of myelin. (22) Inositol and choline may be particularly important for myelin production. They are considered to be in the B vitamin group but was discovered more recently than the numbered series of B vitamins. (22)
  26. Low Level Laser Therapy – I am not familiar with this, see #10: (22), but I have read elsewhere that certain types of light can stimulate activity levels. (Haier)
  27. Practice, practice, practice – new things. (22Myelin is produced in response to learning [45] so remaining mentally stimulated with new experiences and learning new topics or techniques keeps signalling the body to produce myelin. 
  28. Brain-derived Neurotrophic Factor, (BDNF), the brain’s growth factor, may help increase production of myelin by increasing production of brain cells, which include oligodendrocytes. (22) Ways to promote BDNF (link, from within 22) fortunately overlap with the strategies for protecting against demyelination already mentioned above or included in the list of Nrf2 promoting foods.
  29. Reducing exposure to electromagnetic fields (EMF) – energy leakage from laptops, smartphones, WiFi, televisions, and other strong sources of electicity may help protect against myelin degeneration. (22)

References and more details for some of this information were included in the last two posts:

  • Good News/Bad News about Multiple sclerosis Research (7/26/2018)
  • Demyelination, continued. (7/28/2018)

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./ 

Demyelination, continued.

The last post got a little long and it included a link to another health writer who was summarizing a large amount of material on the topic of demyelination – it is amazing what you can learn by reading. I only mentioned the article, (22), briefly because it was already a long post and I hadn’t checked the other writer’s references, (it is primarily all medical research from peer reviewed journals (22.1)); and some of his recommendations are not typical, however I had read of them elsewhere so it seemed thorough and well written. The truly intriguing part for me was just how many other conditions there are that may be susceptible to demyelination and increased negative symptoms due to nerve degeneration.

I have a few of the problems that were mentioned and I have had early symptoms of nerve numbness and pain in my extremities – fingertips particularly. Health is easier to maintain then to restore once chronic conditions develop. I have managed to reverse the nerve numbness and occasional pain that I was having in my fingertips but it is with several daily or weekly health habits, not just a simple take-this-medication-once-a-day solution.

The list of psychiatric conditions that may also have demyelination summarized in an article about possible ways to regenerate myelin, (22):

  • Attention deficit hyperactivity disorder
  • Depression 
  • Bipolar disorder 
  • Dyslexia 
  • Language disorders 
  • Stuttering 
  • Autism 
  • Obsessive-compulsive disorder 
  • Cognitive decline 
  • Alzheimer’s disease
  • Tourette’s syndrome 
  • Schizophrenia 
  • Tone deafness
  • Pathological lying
  • (22)

That is quite a list – protect your oligodendrocytes, because they protect your ability to think and communicate, to control your ability to control your movements and to have stable moods, reduce anxiety, and control your ability to be able to read and speak and to be able to control your impulses and ability to prevent yourself from lying or saying things you don’t intend to say, and to be able to understand that your thoughts are your own thoughts, and to be able to hear accurately. The reference given for the information is this article: [45].

Neurology is the study of the nervous system, Psychiatry or Psychology is the study of mental health and neuropsychiatry is the study of mental symptoms caused by neurological conditions.

This topic of psychiatric conditions and other conditions that may also have demyelination is also reviewed in a summary of Neurotoxicology for neurologists: (6.Neurotoxicology). Neurology is the study of the nerves and nervous system. The nervous system includes the brain and spinal cord and all of the nerves throughout the body. It is subdivided into two main categories: the Central Nervous System (CNS) refers to the brain, the spinal cord and nerves of the brain and spinal cord; and the Peripheral Nervous System (PNS) refers to the nerves throughout the rest of the body. Neurologists are medical doctors who specialize in conditions affecting the nervous system. They may focus on a subspeciality within the field of neurology (What is a neurologist?, HealthLine) Interestingly dementia, chronic headaches, and Multiple sclerosis are mentioned as possible conditions they treat but all the other psychiatric conditions mentioned in the list that may involve demyelination are not mentioned.

The overview article on Neurotoxicology does mention that psychiatric symptoms may occur in patients with neurological conditions but that the symptoms tend to be dismissed by neurologists, and are not studied in depth, so more reliable information is needed about psychiatric symptoms presenting with neurological disorders  – see “Psychiatric and behavioural disorders.” (6.Neurotoxicology) An article for neurologists goes into more detail about psychiatric symptoms that might deserve consultation with a neurologist rather than having the patient only see a psychiatrist: Neurological syndromes which can be mistaken for psychiatric conditions. Early symptoms of Multiple sclerosis for example sometimes may be mistaken for a psychiatric condition. (Neurological syndromes) Talk therapy or psychiatric medications are not going to help a patient regenerate their myelin after all. Neuropyschiatrists are neurologists that also have a degree in psychology and specialize in treating patients with mental health and behavioral symptoms related to neurological disorders. (neuropsychiatrists)

PTSD was also mentioned as a psychiatric condition that may have demyelination.[45]

Reading the article that was referenced for the list of psychiatric conditions that may also have demyelination [45] provided an additional condition that was not added to the list in the summary article about potential ways to help regenerate myelin (22) – PTSD also may involve demyelination, and confirmed the rest of the list were mentioned [45] . The article also includes more background information about the function and development of the myelin sheath in learning and behavior.

Nerves with myelin provide a much faster signal and oligodendrocytes myelinate several different nerves so there is additional benefit in signals that work in a coordinated manner to also improve speed of function. The myelination occurs over time so the phrase practice, practice, practice applies. Peak time of life to learn skills is in our youth because that is when the majority of myelination occurs -starting in early childhood and continuing until the early twenties even up to age thirty. Healing after injury or learning a new skill later in life would still require the practice, practice, practice so the speedy pathways between groups of nerve cells develop their myelin sheaths in coordinated connections. [45]

This information may help show the difficulties faced by people with PTSD or other psychiatric conditions – the brain connections are coordinated in patterns learned from traumatic memories or are stuck in Obsessive Compulsive patterns. The problem with impulse control might also make more sense if there is simply “leaky” wiring in the brain. Signals that were intended to do one thing might end up activating other behaviors because the myelin sheath is no longer functioning as expected.

A cognitive therapy technique, involving frequent practice/repetition of new ways to talk to yourself – it might help strengthen more positive neural networks with new myelin sheath connections.

Learning new patterns of thinking, replacing traumatic or anxious thoughts that were learned as a child or during a traumatic phase of life can take time and a lot of repetition but it is possible, just like it can be possible to relearn how to walk or do other basic life skills after a stroke or traumatic physical injury. A book by Shad Helmstetter, PhD discusses how to rephrase your own internal self talk to be more positive and gives examples for a number of different types of concerns. I found the technique helpful for emotional overeating and share phrases that I wrote regarding healthy eating and lifestyle and a link to the book in a previous post: “What to Say When You’re Talking to Yourself.” The recommendation that I followed was to read the statements several times every day – for a while, months even. I don’t remember how long I read them daily but it was for quite a while and I still have the little ring binder of statements that I wrote.

Often changing behavior patterns is easier when the new pattern is created first, rather then trying to stop the old first. Build the new and then the old is no longer needed.  Addition, I found the source of that idea:

“The secret of change is to focus all of your energy not on fighting the old, but on building the new.” – Socrates

A new way to think about demyelination – what is the underlying problem? Possibly excess cell death, at rates above the ability to breakdown and remove nucleotides (ATP, ADP, UTP, UDP).

The article on demyelination and cognitive disorders, [45] , also mentioned that adenosine plays a role in signaling oligodendrocytes to make myelin and an article with more information on the topic mentions that increased amounts of ATP, ADP, UTP, UDP can signal breakdown of myelin. Increased presence of those chemicals was suggested to possibly be due to increased cell death without normal clearing away of the old cellular material. And some types of Multiple sclerosis seems to involve increased levels of the enzyme that breaks down adenosine so there would be less available to signal the production of myelin. (8.adenosine in MS)

Take home point – protect against excessive cell death and/or mitochondria damage by not having excessive glutamate (11.link) or aspartate – excitatory amino acids that may be overly available in the modern processed food diet – and by having adequate magnesium to protect the cells from their interior by providing the needed energy to block ion channels in the cell membrane and prevent excessive amounts of calcium, glutamate or aspartate from being able to cross the cell membrane and enter the cell’s interior.

As usual however, it is not that simple, (not that avoiding glutamate and aspartate in the diet is easy, they are in many processed foods), other things can also cause excessive cell death.

  • Exposure to toxins in the environment or due to drug use, illicit or legal, can cause excessive cell death and lead to demyelination disorders. An overview:(6.Neurotoxicology)
  • Lack of oxygen can also be a cause. Lack of nutrients in general can increase the breakdown of cellular parts to provide enough nutrients however if malnutrition is severe and ongoing the breakdown (autophagy) can become excessive. (7.Metabolic Stress, Autophagy & Cell Death)
  • Traumatic injury and infection can increase the  rate of cell death above the level that the body’s detoxification systems can cope with clearing away the cellular material. Traumatic injury is associated with increased risk for infection for reasons that are not well understood, the immune system is considered functionally suppressed: (10.Immunobiology of Trauma) Also mentioned briefly in the Skeletal Muscle section of this overview: (6.Neurotoxicology).
  • Anything that causes excess oxidative stress may cause increased rates of mitochondria breakdown so protecting against stress is protecting the mitochondria which is protecting the cells. (7.Metabolic Stress, Autophagy & Cell Death) Mitochondria are the main energy producers within cells and make up about thirty percent of the volume of cardiac/heart cells. Other type of mitochondrial problems can also increase risk of their switching from promoting health through energy production into a mode that promotes cell death. One of the roles mitochondria play in normal health is storage of excess intracellular calcium. If the mitochondria become dysfunctional then the extra calcium is released into the cell where it can signal increased activity such as release of cannabinoids from the membranes. (9.mitochondria in CVD)

This is approaching really long again, so I am stopping here for now.

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./ 

  1. Jordan Fallis, 27 Proven Ways to Promote the Regeneration of Myelin. Feb. 18, 2017, Optimal Living Dynamics,   https://www.optimallivingdynamics.com/blog/25-proven-ways-to-promote-the-regeneration-of-myelin (22)
  2. Reference list: https://www.optimallivingdynamics.com/myelin-references (22.1)
  3. R. Douglas Fields, White Matter in Learning, Cognition, and Psychiatric DisordersTrends Neurosci. 2008 Jul; 31(7): 361–370.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486416/ [45]
  4. Butler CZeman AZJ, Neurological syndromes which can be mistaken for psychiatric conditions
  5. Anne Masi, Marilena M. DeMayo, Nicholas Glozier, Adam J. Guastella, An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neuroscience Bulletin, Vol 33, Iss 2, pp 183–193, https://link.springer.com/article/10.1007%2Fs12264-017-0100-y (autism link)
  6. Harris JBBlain PG, Neurotoxicology: what the neurologist needs to know.

    (6.Neurotoxicology)

  7. Brian J. Altman, Jeffrey C. Rathmell, Metabolic Stress in Autophagy and Cell Death Pathways. Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a008763 http://cshperspectives.cshlp.org/content/4/9/a008763.full (7.Metabolic Stress & Cell Death)
  8. Marek Cieślak, Filip Kukulski, Michał Komoszyński, Emerging Role of Extracellular Nucleotides and Adenosine in Multiple sclerosisPurinergic Signal. 2011 Dec; 7(4): 393–402.   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224637/ (8.adenosine in MS)
  9. Sang-Bing Ong, Asa B. Gustafsson, New roles for mitochondria in cell death in the reperfused myocardium. Cardiovascular Research, Vol. 94, Issue 2, 1 May 2012, pp 190–196, https://academic.oup.com/cardiovascres/article/94/2/190/268169 (9.mitochondria in CVD)
  10. Dr. Daniel Remick, pre-ARC Director, Immunobiology of Trauma, pre-Affinity Research Collaborative (ARC), Boston University Medical Center, http://www.bumc.bu.edu/evanscenteribr/files/2009/07/pre-arcimmunologytrauma.pdf  (10.Immunobiology of Trauma)
  11. Howard Prentice, Jigar Pravinchandra Modi, Jang-Yen Wu, Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, Vol. 2015, Article ID 964518, 7 pages,Hindawi.com https://www.hindawi.com/journals/omcl/2015/964518/ (11.link
  12. Blaylock, R.L. (1996). Excitotoxins: The Taste That Kills. Health Press. ISBN 0-929173-25-2
  13. Blaylock, R.L. (a neurosurgeon) podcast Excitotoxinshttp://www.blaylockhealthchannel.com/bhc-ep-18-excitotoxins (Excitotoxins podcast)
  14. Excitotoxicity, Wikipedia, https://en.wikipedia.org/wiki/Excitotoxicity (Excitotoxicity)
  15. Aspartic Acid, Wikipedia, https://en.wikipedia.org/wiki/Aspartic_acid (Aspartic Acid/Aspartate)

Intelligence and the weight of evidence

The “weight of evidence” is a phrase included in the book The Neuroscience of Intelligence by Richard J. Haier (Cambridge University Press, 2017, New York).  In many areas of study including neuroscience research results may vary somewhat or even give opposite results. The concept of evidence-based medicine suggests we should trust the evidence but – which evidence if there is differing results? The National Clearinghouse Guidelines listed in a recent post were screened for quality of evidence – was there a preponderance of studies that had fairly similar results?

In the last post I mentioned that it was good news that the medical use of magnesium or Epsom salts was mentioned as early as the 17th century and written about in a medical journal in the early 1900’s – it suggests a preponderance of evidence – a “weight of evidence” regarding the medical benefit of magnesium.

In the introduction of the book The Neuroscience of Intelligence the author states that the information in the book is screened and included based on three laws that could be applied to most areas of scientific evidence – paraphrased:

  1. no story about medical evidence is simple;
  2. no one research study is adequate to prove a theory on its own;
  3. it generally takes many years to rule out conflicting and inconsistent research results and establish a weight of evidence. (p xiv, The Neuroscience of Intelligence,  Richard J. Haier)

The book is written for the non-neuroscientist who is interested in gaining an in depth overview of the advances made in the study of the intelligence and the brain for the purpose of general knowledge or for creating policies that are based on realistic expectations of human ability. There have been theories that have not been upheld when larger groups were involved. Intelligence can be affected positively or negatively by early childhood experiences and by better nutrition however  by later adolescence and adulthood years the differences are more affected by genetic potential whether parents were rich or poor, whether schools were average or above average. Many genes are involved however, affecting many pathways throughout the brain. Intelligence and creativity isn’t just located in the frontal area of the brain or in just the right hemisphere.

From a magnesium perspective an interesting point that stood out for me was on page 61. Genes that have been found to be involved in intelligence include several that encode glutamate receptors. Background information: Alzheimer’s disease tends to cause more damage in areas of the brain that have a greater number of glutamate receptors – and adequate magnesium is necessary to help protect brain cells from being overexcited by too much glutamate (an amino acid used in flavoring agents, a commonly known type is MSG, Mono sodium glutamate). Glutamate can open the receptors in the cell membranes while the presence of magnesium inside of the cell can keep them closed. NMDA receptors are discussed on pages 101-102 of the book Magnesium and the Central Nervous System and is mentioned 249 times in the book, (the ebook has a useful search feature). (2) 

Excess calcium being allowed to enter the cell can also overexcite cells to the point of cell death. Too much or too little activity of the NMDA receptors can cause problems with health or damage cells. Overexcitatory activity of the NMDA receptors has been associated with damage from ischemic stroke, traumatic brain injury, neonatal brain injury, and neurodegenerative conditions (which include Alzheimer’s Disease, p 104, (2)). Too much magnesium has been known to cause neonatal brain injury when given intravenously or intramuscularly for the expectant mother during preeclampsia/eclampsia to reduce seizures (3), or for other causes of preterm labor – some magnesium is protective for the fetal brain but too much can negatively affect fetal brain cells. (p103, Mg & the CNS, (2)) 

On page 61 of the book The Neuroscience of Intelligence (1)  genes involved with pathways that influence  glutamate binding with NMDA receptors are mentioned including KNCMA1, NRXN1, POU2F3, and SCRT. (1Both books mention that the NMDA receptors and glutamate as a neurotransmitter are involved with learning and memory. (p101, 2) 

A brief look at what might be known about those genes suggests differences in them may be associated with spasticity, (4), “epilepsy, ataxia, mental retardation, and chronic pain,” (7), alcohol abuse, (5), cervical cancer, (6), – a wide variety of conditions not just learning and memory. Take home point – magnesium is important for learning and memory and general health in an adequate amount, but not excessive amount if given intravenously or intramuscularly.

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./ 

  1. Richard J. Haier, The Neuroscience of Intelligence, (Cambridge University Press, 2017, New York), http://www.richardhaier.com/the-neuroscience-of-intelligence/ (1)
  2. Robert Vink, Mihai Nechifor, editors, Magnesium in the Central Nervous System, University of Adelaide Press, 2011, adelaide.edu.au, free ebook pdf, https://www.adelaide.edu.au/press/titles/magnesium/magnesium-ebook.pdf  (2) 
  3. Magnesium Sulfate for Seizure Prevention During Pregnancy, American College of Cardiology,  cardiosmart.org,   https://www.cardiosmart.org/healthwise/hw67/281/hw67281 (3)
  4. Baker D., Big conductance calcium-activated potassium channel openers control spasticity without sedation., Queen Mary University of London, https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/24743/BakerBigconductance2017accepted.pdf?sequence=1 (4)
  5. Jill C. Bettinger, Andrew G. Davies, The role of the BK channel in ethanol response behaviors: evidence from model organism and human studies. Front. Physiol., 09 September 2014,   https://www.frontiersin.org/articles/10.3389/fphys.2014.00346/full (5)
  6. Z Zhang, PC Huettner, L Nguyen, M Bidder, MC Funk, J Li, JS Rader, Aberrant promoter methylation and silencing of the POU2F3 gene in cervical cancer, Oncogene vol 25, pp 5436–5445 (31 August 2006), https://www.nature.com/articles/1209530 (6)
  7. C. Contet, S. P. Goulding, D. A. Kuljis, and A. L. Barth, BK Channels in the Central Nervous System, Europe PMC Article,  Int Rev Neurobiol. 2016; 128: 281–342. http://europepmc.org/articles/PMC4902275/ (7)